Skip to main content

Morphing Methods to Visualize Coarse-Grained Protein Dynamics

  • Protocol
  • First Online:
Protein Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1084))

Abstract

Morphing was initially developed as a cinematic effect, where one image is seamlessly transformed into another image. The technique was widely adopted by biologists to visualize the transition between protein conformational states, generating an interpolated pathway from an initial to a final protein structure. Geometric morphing seeks to create visually suggestive movies that illustrate structural changes between conformations but do not necessarily represent a biologically relevant pathway, while minimum energy path (MEP) interpolations aim at describing the true transition state between the crystal structure minima in the energy landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vonrhein C, Schlauderer GJ, Schulz GE (1995) Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure 3:483–490

    Article  PubMed  CAS  Google Scholar 

  2. Gerstein M, Krebs W (1998) A database of macromolecular motions. Nucleic Acids Res 26:4280–4290

    Article  PubMed  CAS  Google Scholar 

  3. Flores S, Echols N, Milburn D, Hespenheide B, Keating K, Lu J, Wells S, Yu EZ, Thorpe M, Gerstein M (2006) The database of macromolecular motions: new features added at the decade mark. Nucleic Acids Res 34:D296–301

    Article  PubMed  CAS  Google Scholar 

  4. Kleywegt GJ (1996) Use of non-crystallographic symmetry in protein structure refinement. Acta Cryst D-Biol Cryst 52:842–857

    Article  CAS  Google Scholar 

  5. Ye YZ, Godzik A (2004) FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids 32:W582–W585

    Article  CAS  Google Scholar 

  6. Weiss DR, Levitt M (2009) Can morphing methods predict intermediate structures? J Mol Biol 385:665–674

    Article  PubMed  CAS  Google Scholar 

  7. Farrell DW, Speranskiy K, Thorpe MF (2010) Generating stereochemically acceptable protein pathways. Proteins 78:2908–2921

    Article  PubMed  CAS  Google Scholar 

  8. Kim MK, Jernigan RL, Chirikjian GS (2002) Efficient generation of feasible pathways for protein conformational transitions. Biophys J 83:1620–1630

    Article  PubMed  CAS  Google Scholar 

  9. Metzner P, Schutte C, Vanden-Eijnden E (2006) Illustration of transition path theory on a collection of simple examples. J Chem Phys 125:084110

    Article  PubMed  Google Scholar 

  10. Vanden-Eijnden E, Tal FA (2005) Transition state theory: variational formulation, dynamical corrections, and error estimates. J Chem Phys 123:184103

    Article  PubMed  Google Scholar 

  11. Weinan E, Vanden-Eijnden E (2010) Transition path theory and path finding algorithms for the study of rare events. Annu Rev Phys Chem 61:391–420

    Article  Google Scholar 

  12. Van Erp TS (2012) Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems. Adv Chem Phys 151:27–58

    Article  Google Scholar 

  13. Elber R (2005) Long-timescale simulation methods. Curr Opin Struct Biol 15:151–156

    Article  PubMed  CAS  Google Scholar 

  14. Schiltter JM, Engels M, Kruger P, Jacoby E, Wollmer A (1993) Targeted molecular dynamics simulation of conformational change—application to the T-R transition in insulin. Mol Simul 10:291–308

    Article  Google Scholar 

  15. Koppole S, Smith JC, Fischer S (2007) The structural coupling between ATPase activation and recovery stroke in the myosin II motor. Structure 15:825–837

    Article  PubMed  CAS  Google Scholar 

  16. Noe F, Fischer S (2008) Transition network for modeling the kinetics of conformational changes in macromolecules. Curr Opin Struct Biol 18:154–162

    Article  PubMed  CAS  Google Scholar 

  17. Tirion MM (1996) Low-amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys Rev Lett 77:1905–1908

    Article  PubMed  CAS  Google Scholar 

  18. Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15:586–592

    Article  PubMed  CAS  Google Scholar 

  19. Kantarci-Carsibasi N, Haligoglu T, Doruker P (2008) Conformational transition pathways explored by Monte Carlo simulation integrated with collective modes. Biophys J 95:5862–5873

    Article  PubMed  CAS  Google Scholar 

  20. Korkut A, Hendrickson WA (2009) Computation of conformational transitions in proteins by virtual atom molecular mechanics as validated in application of adenylate kinase. Proc Natl Acad Sci U S A 106:15673–15678

    Article  PubMed  CAS  Google Scholar 

  21. Maragakis P, Karplus M (2005) Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. J Mol Biol 352:807–822

    Article  PubMed  CAS  Google Scholar 

  22. Berkowitz M, Morgan JD, McCammon JA, Northrup SH (1983) Diffusion-controlled reactions- a variational formula for the optimum reaction coordinates. J Chem Phys 79:5563

    Article  CAS  Google Scholar 

  23. Huo SH, Straub JE (1997) The MaxFlux algorithm for calculating variationally optimized reaction paths for conformational transitions in many body systems at finite temperature. J Chem Phys 107:5000–5006

    Article  CAS  Google Scholar 

  24. Jonsson, H., G. Mills, and K. W. Jacobsen. 1998. Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum dynamics in condense phase simulations. World Sci., Singapore. 285-404.

    Google Scholar 

  25. Fischer S, Karplus M (1992) Conjugate peak refinement- an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom. Chem Phys Lett 194:252–261

    Article  CAS  Google Scholar 

  26. Chu JW, Voth GA (2007) Coarse-grained free energy functions for studying protein conformational changes: a double well network model. Biophys J 93:3860–3871

    Article  PubMed  CAS  Google Scholar 

  27. Franklin J, Koehl P, Doniach S, Delarue M (2007) MinActionPath: maximum likelihood trajectory for large-scale structural transitions in a coarse-grained locally harmonic energy landscape. Nucl Acids Res 35:W477–W482

    Article  PubMed  Google Scholar 

  28. Wiley, D. F., N. Amenta, D. A. Alcantara, D. Ghosh, Y. J. Kil, E. Delson, W. Harcourt-Smith, F. J. Rolf, K. S. John, and B. Haman. 2005. Evolutionary morphing. In IEEE Viz. 431-438

    Google Scholar 

  29. Slice DE (2007) Geometric morphometrics. Annu Rev Anthropol 36:261–281

    Article  Google Scholar 

  30. Henzler-Widman KA, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    Article  Google Scholar 

  31. Mueller K, Brown LD (1979) Location of saddle points and minimum energy paths by a constrained simplex optimization procedure. Theor Chim Acta (Berl) 53:75–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media,New York

About this protocol

Cite this protocol

Weiss, D.R., Koehl, P. (2014). Morphing Methods to Visualize Coarse-Grained Protein Dynamics. In: Livesay, D. (eds) Protein Dynamics. Methods in Molecular Biology, vol 1084. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-658-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-658-0_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-657-3

  • Online ISBN: 978-1-62703-658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics