Skip to main content

Rectangle FRAP for Measuring Diffusion with a Laser Scanning Microscope

  • Protocol
  • First Online:
Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Fluorescence recovery after photobleaching (FRAP) is one of the most useful microscopy techniques for studying the mobility of molecules in terms of a diffusion coefficient. Here, we describe a FRAP method that allows such measurements, relying on the photobleaching of a rectangular region of any size and aspect ratio. We start with a brief overview of the rectangle FRAP theory, and next we provide guidelines for performing FRAP measurements, including a discussion of the experimental setup and the data analysis. Finally, we discuss how to verify correct use of the rectangle FRAP method using test solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ishihara A, Jacobson K (1993) A closer look at how membrane-proteins move. Biophys J 65(5):1754–1755

    Article  PubMed  CAS  Google Scholar 

  2. Umenishi F, Verbavatz JM, Verkman AS (2000) cAMP regulated membrane diffusion of a green fluorescent protein-aquaporin 2 chimera. Biophys J 78(2):1024–1035

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez-Mancenido F, Braeckmans K, De Smedt SC et al (2006) Characterization of diffusion of macromolecules in konjac glucomannan solutions and gels by fluorescence recovery after photobleaching technique. Int J Pharm 316(1–2):37–46. doi:10.1016/j.ijpharm.2006.02.029

    Article  PubMed  CAS  Google Scholar 

  4. Burke MD, Park JO, Srinivasarao M, Khan SA (2000) Diffusion of macromolecules in polymer solutions and gels: a laser scanning confocal microscopy study. Macromolecules 33(20):7500–7507. doi:10.1021/Ma000786l

    Article  CAS  Google Scholar 

  5. Censi R, Vermonden T, van Steenbergen MJ et al (2009) Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery. J Control Release 140(3):230–236. doi:10.1016/j.jconrel.2009.06.003

    Article  PubMed  CAS  Google Scholar 

  6. DeSmedt SC, Meyvis TKL, Demeester J et al (1997) Diffusion of macromolecules in dextran methacrylate solutions and gels as studied by confocal scanning laser microscopy. Macromolecules 30(17):4863–4870. doi:10.1021/Ma970100y

    Article  CAS  Google Scholar 

  7. Van de Manakker F, Braeckmans K, el Morabit N et al (2009) Protein-release behavior of self-assembled PEG-beta-cyclodextrin/PEG-cholesterol hydrogels. Adv Funct Mater 19(18):2992–3001. doi:10.1002/adfm.200900603

    Article  Google Scholar 

  8. Van Tomme SR, De Geest BG, Braeckmans K et al (2005) Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching. J Control Release 110(1):67–78. doi:10.1016/j.jconrel.2005.09.005

    Article  PubMed  Google Scholar 

  9. Braga J, Desterro JMP, Carmo-Fonseca M (2004) Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol Biol Cell 15(10):4749–4760. doi:10.1091/mbc.E04-06-0496

    Article  PubMed  CAS  Google Scholar 

  10. Seksek O, Biwersi J, Verkman AS (1997) Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138(1):131–142. doi:10.1083/jcb.138.1.131

    Article  PubMed  CAS  Google Scholar 

  11. Verkman AS (2003) Diffusion in cells measured by fluorescence recovery after photobleaching. Methods Enzymol 360:635–648

    Article  PubMed  CAS  Google Scholar 

  12. Axelrod D, Koppel DE, Schlessinger J et al (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9):1055–1069

    Article  PubMed  CAS  Google Scholar 

  13. Braeckmans K, Stubbe BG, Remaut K et al (2006) Anomalous photobleaching in fluorescence recovery after photobleaching measurements due to excitation saturation—a case study for fluorescein. J Biomed Opt 11(4)

    Google Scholar 

  14. Braeckmans K, Remaut K, Vandenbroucke RE et al (2007) Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples. Biophys J 92(6):2172–2183. doi:10.1529/biophysj.106.099838

    Article  PubMed  CAS  Google Scholar 

  15. Mazza D, Braeckmans K, Cella F et al (2008) A new FRAP/FRAPa method for three-dimensional diffusion measurements based on multiphoton excitation microscopy. Biophys J 95(7):3457–3469. doi:10.1529/biophysj.108.133637

    Article  PubMed  CAS  Google Scholar 

  16. Braeckmans K, Peeters L, Sanders NN et al (2003) Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys J 85(4):2240–2252. doi:10.1016/S0006-3495(03)74649-9

    Article  PubMed  CAS  Google Scholar 

  17. Deschout H, Hagman J, Fransson S et al (2010) Straightforward FRAP for quantitative diffusion measurements with a laser scanning microscope. Opt Express 18(22):22886–22905

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support by the Ghent University Special Research Fund (Centre for Nano- and Biophotonics) is acknowledged with gratitude. Ranhua Xiong gratefully acknowledges the financial support from China Scholarship Council (CSC). Hendrik Deschout is a doctoral fellow of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT), Belgium.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xiong, R., Deschout, H., Demeester, J., De Smedt, S.C., Braeckmans, K. (2014). Rectangle FRAP for Measuring Diffusion with a Laser Scanning Microscope. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics