Skip to main content

Transcript Profiling in Arabidopsis with Genome Tiling Microarrays

  • Protocol
  • First Online:
Tiling Arrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1067))

Abstract

Microarray technology is at present a standardized workflow for genome-wide expression analysis. Whole-genome tiling microarrays have emerged as an important platform for flexible and comprehensive expression profiling. In this chapter we describe a detailed standardized workflow for experiments assessing the transcriptome of Arabidopsis using tiling arrays and provide useful hints for critical steps from experimental design to data analysis. Although the protocol is optimized for AGRONOMICS1 arrays, it can readily be adapted to other tiling arrays. AGRONOMICS1 is the first platform that enables strand-specific expression analysis of the Arabidopsis genome with a single array. Moreover, it includes all perfect match probes from the original ATH1 array, allowing readily integration with the large existing ATH1 knowledge base. This workflow is designed for the analysis of raw data for any number of samples and it does not pose any particular hardware requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mockler TC, Chan S, Sundaresan A, Chen H, Jacobsen SE, Ecker JR (2005) Applications of DNA tiling arrays for whole-genome analysis. Genomics 85:1–15

    Article  PubMed  CAS  Google Scholar 

  2. Galbraith DW (2006) DNA microarray analyses in higher plants. OMICS 10:455–473

    Article  PubMed  CAS  Google Scholar 

  3. Galbraith DW, Edwards J (2010) Applications of microarrays for crop improvement: here, there, and everywhere. Bioscience 60:337–348

    Article  Google Scholar 

  4. Redman JC, Haas BJ, Tanimoto G, Town CD (2004) Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant J 38:545–561

    Article  PubMed  CAS  Google Scholar 

  5. Bertone P, Trifonov V, Rozowsky JS, Schubert F, Emanuelsson O, Karro J et al (2006) Design optimization methods for genomic DNA tiling arrays. Genome Res 16:271–281

    Article  PubMed  CAS  Google Scholar 

  6. Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ et al (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846

    Article  PubMed  CAS  Google Scholar 

  7. Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA et al (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149

    Article  PubMed  CAS  Google Scholar 

  8. Hazen SP, Naef F, Quisel T, Gendron JM, Chen H, Ecker JR et al (2009) Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol 10:R17

    Article  PubMed  Google Scholar 

  9. Laubinger S, Zeller G, Henz SR, Sachsenberg T, Widmer CK, Naouar N et al (2008) At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biol 9:R112

    Article  PubMed  Google Scholar 

  10. Stolc V, Samanta MP, Tongprasit W, Sethi H, Liang S, Nelson DC et al (2005) Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc Natl Acad Sci U S A 102:4453–4458

    Article  PubMed  CAS  Google Scholar 

  11. Hanada K, Zhang X, Borevitz JO, Li WH, Shiu SH (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17:632–640

    Article  PubMed  CAS  Google Scholar 

  12. Swiezewski S, Crevillen P, Liu F, Ecker JR, Jerzmanowski A, Dean C (2007) Small RNA-mediated chromatin silencing directed to the 3’ region of the Arabidopsis gene encoding the regulator, FLC. Proc Natl Acad Sci U S A 104:3633–3638

    Article  PubMed  CAS  Google Scholar 

  13. Ner-Gaon H, Fluhr R (2006) Whole-genome microarray in Arabidopsis facilitates global analysis of retained introns. DNA Res 13:111–121

    Article  PubMed  CAS  Google Scholar 

  14. Thibaud-Nissen F, Wu H, Richmond T, Redman JC, Johnson C, Green R (2006) Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. Plant J 47:152–162

    Article  PubMed  CAS  Google Scholar 

  15. Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N et al (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86

    Article  PubMed  Google Scholar 

  16. Martienssen RA, Doerge RW, Colot V (2005) Epigenomic mapping in Arabidopsis using tiling microarrays. Chromosome Res 13:299–308

    Article  PubMed  CAS  Google Scholar 

  17. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

  18. Li X, Wang X, He K, Ma Y, Su N, He H et al (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276

    Article  PubMed  CAS  Google Scholar 

  19. Inagaki S, Miura-Kamio A, Nakamura Y, Lu F, Cui X, Cao X et al (2010) Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome. EMBO J 29:3496–3506

    Article  PubMed  CAS  Google Scholar 

  20. Farrona S, Thorpe FL, Engelhorn J, Adrian J, Dong X, Sarid-Krebs L et al (2011) Tissue-specific expression of FLOWERING LOCUS T in Arabidopsis is maintained independently of Polycomb Group protein repression. Plant Cell 23:3204–3214

    Article  PubMed  CAS  Google Scholar 

  21. Moghaddam AMB, Roudier F, Seifert M, Bérard C, Magniette MLM, Ashtiyani RK et al (2011) Additive inheritance of histone modifications in Arabidopsis thaliana intra‐specific hybrids. Plant J 67:691–700

    Article  PubMed  CAS  Google Scholar 

  22. Rehrauer H, Aquino C, Gruissem W, Henz SR, Hilson P, Laubinger S et al (2010) AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling. Plant Physiol 152:487–499

    Article  PubMed  CAS  Google Scholar 

  23. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L et al (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:1–5

    Article  Google Scholar 

  24. Massonnet C, Vile D, Fabre J, Hannah MA, Caldana C, Lisec J et al (2010) Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three Arabidopsis accessions cultivated in ten laboratories. Plant Physiol 152:2142–2157

    Article  PubMed  CAS  Google Scholar 

  25. Bischof S, Baerenfaller K, Wildhaber T, Troesch R, Vidi PA, Roschitzki B et al (2011) Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N-acetylated plastid precursor proteins. Plant Cell 23:3911–3928

    Article  PubMed  CAS  Google Scholar 

  26. Andriankaja M, Dhondt S, De Bodt S, Vanhaeren H, Coppens F, De Milde L et al (2012) Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev Cell 22:64–78

    Article  PubMed  CAS  Google Scholar 

  27. Geiss GK, Bumgarner R, Birditt B, Dahl T, Dowidar N, Dunaway DL et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325

    Article  PubMed  CAS  Google Scholar 

  28. Spurgeon SL, Jones RC, Ramakrishnan R (2008) High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One 3:e1662

    Article  PubMed  Google Scholar 

  29. Weaver S, Dube S, Mir A, Qin J, Sun G, Ramakrishnan R et al (2010) Taking qPCR to a higher level: analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods 50:271–276

    Article  PubMed  CAS  Google Scholar 

  30. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  31. Naef F, Magnasco MO (2003) Solving the riddle of the bright mismatches: labeling and effective binding in oligonucleotide arrays. Phys Rev E Stat Nonlin Soft Matter Phys 68:011906

    Article  PubMed  Google Scholar 

  32. Wu Z, Irizarry RA (2010) Stochastic models inspired by hybridization theory for short oligonucleotide arrays. J Comput Biol 12:882–893

    Article  Google Scholar 

  33. Bullard JH, Purdom E, Hansen KD, Dudoit S (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11:94

    Article  PubMed  Google Scholar 

  34. Oshlack A, Wakefield MJ (2009) Transcript length bias in RNA-seq data confounds systems biology. Biol Direct 4:14

    Article  PubMed  Google Scholar 

  35. Wheelan SJ, Murillo FM, Boeke JD (2008) The incredible shrinking world of DNA microarrays. Mol Biosyst 4:726–732

    Article  PubMed  CAS  Google Scholar 

  36. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC et al (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2:345–350

    Article  PubMed  CAS  Google Scholar 

  37. Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J (2005) Independence and reproducibility across microarray platforms. Nat Methods 2:337–344

    Article  PubMed  CAS  Google Scholar 

  38. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  39. Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M et al (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20:506–512

    Article  PubMed  CAS  Google Scholar 

  40. Schmidt A, Schmid MW, Grossniklaus U (2012) Analysis of plant germline development by high-throughput RNA profiling: technical advances and new insights. Plant J 70:18–29

    Article  PubMed  CAS  Google Scholar 

  41. Mueller M, Patrignani A, Rehrauer H, Gruissem W, Hennig L (2012) Evaluation of alternative RNA labeling protocols for transcript profiling with Arabidopsis AGRONOMICS1 tiling arrays. Plant Methods 8:18

    Article  Google Scholar 

  42. R Development Core Team (2012) R: a language and environment for statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  43. Bengtsson H, Simpson K, Bullard J, Hansen K (2008) Aroma.affymetrix: a generic framework in R for analyzing small to very large Affymetrix data sets in bounded memory, Tech Report #745, Department of Statistics, University of California, Berkeley, CA.

    Google Scholar 

  44. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  PubMed  CAS  Google Scholar 

  45. Zimmermann P, Schildknecht B, Craigon D, Garcia-Hernandez M, Gruissem W, May S et al (2006) MIAME/Plant – adding value to plant microarrray experiments. Plant Methods 2:1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleagues at the Functional Genomics Center Zurich for helpful discussions. Research in the authors’ laboratories is supported by the Sixth and Seventh Framework Programs of the European Commission through the AGRON-OMICS integrated project (grant no. LSHG–CT–2006–037704) to W.G., L.H., and others and the TiMet collaborative project (grant 245143) to W.G., and by a grant from the Swedish Research Council to L.H.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Coman, D., Gruissem, W., Hennig, L. (2013). Transcript Profiling in Arabidopsis with Genome Tiling Microarrays. In: Lee, TL., Shui Luk, A. (eds) Tiling Arrays. Methods in Molecular Biology, vol 1067. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-607-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-607-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-606-1

  • Online ISBN: 978-1-62703-607-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics