Skip to main content

Clinical SNP Detection by the SmartAmp Method

  • Protocol
  • First Online:
Pharmacogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1015))

Abstract

For advancing personalized medicine, it is important to incorporate pharmacogenomics data into routine clinical practice. The SmartAmp method enables us to detect genetic polymorphisms or mutations in target genes within 30–40 min without DNA isolation and PCR amplification. The SmartAmp method has been developed based on the concept that DNA amplification per se is the signal for the presence of a specific target sequence. Differing from the widely used PCR, the SmartAmp reaction is an isothermal DNA amplification, where the initial step of copying a target sequence from the template DNA is critically important. For clinical applications, we have created SmartAmp primers and clinical device that detect genetic polymorphisms of human genes involved in drug-induced toxicity or disease risk. This chapter addresses both the basic molecular mechanism underlying the SmartAmp method and its practical applications to detect clinically important single nucleotide polymorphisms (SNPs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitani Y et al (2007) Rapid SNP diagnostics using asymmetric isothermal amplification and a new mismatch-suppression technology. Nat Methods 4:257–262

    Article  PubMed  CAS  Google Scholar 

  2. Mitani Y et al (2009) A rapid and cost-effective SNP detection method: application of SmartAmp2 to pharmacogenomics research. Pharmacogenomics 10:1187–1197

    Article  PubMed  CAS  Google Scholar 

  3. Watanabe J et al (2007) Use of a competitive probe in assay design for genotyping of the UGT1A1*28 microsatellite polymorphism by the smart amplification process. Biotechniques 43:479–484

    Article  PubMed  CAS  Google Scholar 

  4. Toyoda Y et al (2009) Earwax, osmidrosis, and breast cancer: why does one SNP (538G>A) in the human ABC transporter ABCC11 gene determine earwax type? FASEB J 23: 2001–2013

    Article  PubMed  CAS  Google Scholar 

  5. Yoshiura K et al (2006) A SNP in the ABCC11 gene is the determinant of human earwax type. Nat Genet 38:324–330

    Article  PubMed  CAS  Google Scholar 

  6. Miura K et al (2007) A strong association between human earwax-type and apocrine colostrum secretion from the mammary gland. Hum Genet 121:631–633

    Article  PubMed  Google Scholar 

  7. Ota I et al (2010) Association between breast cancer risk and the wild-type allele of human ABC transporter ABCC11. Anticancer Res 30:5189–5194

    PubMed  CAS  Google Scholar 

  8. Toyoda Y, Ishikawa T (2010) Pharmacogenomics of human ABC transporter ABCC11 (MRP8): potential risk of breast cancer and chemotherapy failure. Anticancer Agents Med Chem 10:617–623

    Article  PubMed  CAS  Google Scholar 

  9. Kimura Y et al (2011) Optimization of turn-back primers in isothermal amplification. Nucleic Acids Res 39:e59

    Article  PubMed  CAS  Google Scholar 

  10. Kaminsky LS, Zhang ZY (1997) Human P450 metabolism of warfarin. Pharmacol Ther 73:67–74

    Article  PubMed  CAS  Google Scholar 

  11. Cannegieter SC et al (1995) Optimal oral anticoagulant therapy in patients with mechanical heart valves. N Engl J Med 333:11–17

    Article  PubMed  CAS  Google Scholar 

  12. Fihn SD et al (1993) Risk factors for complications of chronic anticoagulation. Ann Intern Med 118:511–520

    Article  PubMed  CAS  Google Scholar 

  13. Aomori T et al (2009) Rapid SNP detection of the cytochrome P-450 (CYP) 2C9 and the vitamin K oxide reductase (VKORC1) gene for the warfarin dose adjustment by Smart-Amplification process version 2. Clin Chem 55:804–812

    Article  PubMed  CAS  Google Scholar 

  14. Ando Y et al (2000) Polymorphisms of UDPglucuronosyltransferase gene and irinotecan adverse reactions: a pharmacogenetic analysis. Cancer Res 60:6921–6929

    PubMed  CAS  Google Scholar 

  15. Ando Y, Hasegawa Y (2005) Clinical pharmacogenetics of irinotecan (CPT-11). Drug Metab Rev 37:565–574

    Article  PubMed  CAS  Google Scholar 

  16. Rouits E et al (2004) Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin Cancer Res 10: 5151–5159

    Article  PubMed  CAS  Google Scholar 

  17. Iyer L et al (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and adverse reactions. Pharmacogenomics J 2:43–47

    Article  PubMed  CAS  Google Scholar 

  18. Innocenti F et al (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388

    Article  PubMed  CAS  Google Scholar 

  19. Marcuello E et al (2004) UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 91:678–682

    PubMed  CAS  Google Scholar 

  20. Kitagawa C et al (2005) Genetic polymorphism in the phenobarbital-responsive enhancer module of the UDPglucuronosyltransferase 1A1 gene and irinotecan toxicity. Pharmacogenet Genomics 15:35–41

    Article  PubMed  CAS  Google Scholar 

  21. Hasegawa Y et al (2006) Pharmacogenetic approach for cancer treatment-tailored medicine in practice. Ann N Y Acad Sci 1086:223–232

    Article  PubMed  CAS  Google Scholar 

  22. Innocenti F et al (2002) Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups. Pharmacogenetics 12:725–733

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe J et al (2007) Complete suppression of background amplification using competitive probe in a SMart-Amplification process assay for microsatellite polymorphism genotyping of UGT1A1*28. Biotechniques 43:479–484

    Article  PubMed  CAS  Google Scholar 

  24. Leschzinger GD et al (2007) ABCB1 genotype and PGP expression, function and therapeutic drug response: a critical review and recommendations for future research. Pharmacogenomics J 7:154–179

    Article  Google Scholar 

  25. Sakurai A et al (2007) Quantitative SAR analysis and molecular dynamic simulation to functionally validate nonsynonymous polymorphisms of human ABC transporter ABCB1. Biochemistry 46:7678–7693

    Article  PubMed  CAS  Google Scholar 

  26. Hüebner C et al (2007) Triallelic single nucleotide polymorphisms and genotyping error in genetic epidemiology studies: MDR1 (ABCB1) G2677/T/A as an example. Cancer Epidemiol Biomarkers Prev 16: 1185–1192

    Article  PubMed  Google Scholar 

  27. Ishikawa T et al (2010) Emerging new technologies in pharmacogenomics: rapid SNP detection, molecular dynamic simulation, and QSAR analysis methods to validate clinically important genetic variants of human ABC transporter ABCB1 (P-gp/MDR1). Pharmacol Ther 126:69–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Alexander Lezhava (RIKEN Omics Science Center) and Mr. Makoto Nagakura and Mr. Takeaki Fukami (BioTec Co., Ltd.) for their fruitful discussion. The authors’ study was supported by a Japan Science and Technology Agency (JST) research project named “Development of the world’s fastest SNP detection system” (to T.I.) and a Research Grant for RIKEN Omics Science Center from the Ministry of Education, Culture, Sports, Science and Technology (to Y.H.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ishikawa, T., Hayashizaki, Y. (2013). Clinical SNP Detection by the SmartAmp Method. In: Innocenti, F., van Schaik, R. (eds) Pharmacogenomics. Methods in Molecular Biology, vol 1015. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-435-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-435-7_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-434-0

  • Online ISBN: 978-1-62703-435-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics