Skip to main content

A Novel Approach to Quantify G-Protein-Coupled Receptor Dimerization Equilibrium Using Bioluminescence Resonance Energy Transfer

  • Protocol
  • First Online:
Chemokines

Abstract

Along with other resonance energy transfer techniques, bioluminescence resonance energy transfer (BRET) has emerged as an important method for demonstrating protein–protein interactions in cells. In the field of G-protein-coupled receptors, including chemokine receptors, BRET has been widely used to investigate homo- and heterodimerization, a feature of their interactions that is emerging as integral to function and regulation. While demonstrating the existence of dimers for a given receptor proved to be fairly straightforward, quantitative comparisons of different receptors or mutants are nontrivial because of inevitable variations in the expression of receptor constructs. The uncontrollable parameters of the cellular expression machinery make amounts of transfected DNA extremely poor predictors for the expression levels of BRET donor and acceptor receptor constructs, even in relative terms. In this chapter, we show that properly accounting for receptor expression levels is critical for quantitative interpretation of BRET data. We also provide a comprehensive account of expected responses in all types of BRET experiments and propose a framework for uniform and accurate quantitative treatment of these responses. The framework allows analysis of both homodimer and heterodimer BRET data. The important caveats and obstacles for quantitative treatment are outlined, and the utility of the approach is illustrated by its application to the homodimerization of wild-type (WT) and mutant forms of the chemokine receptor CXCR4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK (2007) A monomeric G-protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci USA 104:7682–7687

    Article  PubMed  CAS  Google Scholar 

  2. Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881

    Article  PubMed  CAS  Google Scholar 

  3. Angers S, Salahpour A, Bouvier M (2002) Dimerization: an emerging concept for G-protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 42:409–435

    Article  PubMed  CAS  Google Scholar 

  4. Springael JY, Urizar E, Parmentier M (2005) Dimerization of chemokine receptors and its functional consequences. Cytokine Growth Factor Rev 16:611–623

    Article  PubMed  CAS  Google Scholar 

  5. Terrillon S, Bouvier M (2004) Roles of ­G-protein-coupled receptor dimerization. EMBO Rep 5:30–34

    Article  PubMed  CAS  Google Scholar 

  6. Milligan G (2004) G-protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7

    Article  PubMed  CAS  Google Scholar 

  7. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377

    Article  PubMed  CAS  Google Scholar 

  8. Benkirane M, Jin DY, Chun RF, Koup RA, Jeang KT (1997) Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J Biol Chem 272:30603–30606

    Article  PubMed  CAS  Google Scholar 

  9. Issafras H, Angers S, Bulenger S, Blanpain C, Parmentier M, Labbe-Jullie C, Bouvier M, Marullo S (2002) Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem 277:34666–34673

    Article  PubMed  CAS  Google Scholar 

  10. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, Fernandez S, Martin de Ana A, Jones DR, Toran JL, Martinez AC (2001) Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J 20:2497–2507

    Article  PubMed  CAS  Google Scholar 

  11. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, Klotman ME, Diaz GA (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34:70–74

    Article  PubMed  CAS  Google Scholar 

  12. Lagane B, Chow KY, Balabanian K, Levoye A, Harriague J, Planchenault T, Baleux F, Gunera-Saad N, Arenzana-Seisdedos F, Bachelerie F (2008) CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood 112:34–44

    Article  PubMed  CAS  Google Scholar 

  13. Percherancier Y, Berchiche YA, Slight I, Volkmer-Engert R, Tamamura H, Fujii N, Bouvier M, Heveker N (2005) Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem 280:9895–9903

    Article  PubMed  CAS  Google Scholar 

  14. Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O, Lebbe C, Kerob D, Dupuy A, Hermine O, Nicolas JF, Latger-Cannard V, Bensoussan D, Bordigoni P, Baleux F, Le Deist F, Virelizier JL, Arenzana-Seisdedos F, Bachelerie F (2005) WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 105:2449–2457

    Article  PubMed  CAS  Google Scholar 

  15. Kramp BK, Sarabi A, Koenen RR, Weber C (2011) Heterophilic chemokine receptor interactions in chemokine signaling and biology. Exp Cell Res 317:655–663

    Article  PubMed  CAS  Google Scholar 

  16. Salanga CL, O’Hayre M, Handel T (2009) Modulation of chemokine receptor activity through dimerization and crosstalk. Cell Mol Life Sci 66:1370–1386

    Article  PubMed  CAS  Google Scholar 

  17. El-Asmar L, Springael JY, Ballet S, Andrieu EU, Vassart G, Parmentier M (2005) Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67:460–469

    Article  PubMed  CAS  Google Scholar 

  18. Sohy D, Parmentier M, Springael JY (2007) Allosteric transinhibition by specific antagonists in CCR2/CXCR4 heterodimers. J Biol Chem 282:30062–30069

    Article  PubMed  CAS  Google Scholar 

  19. Sohy D, Yano H, de Nadai P, Urizar E, Guillabert A, Javitch JA, Parmentier M, Springael JY (2009) Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of “selective” antagonists. J Biol Chem 284:31270–31279

    Article  PubMed  CAS  Google Scholar 

  20. Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336:296–302

    Article  PubMed  CAS  Google Scholar 

  21. Contento RL, Molon B, Boularan C, Pozzan T, Manes S, Marullo S, Viola A (2008) CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci USA 105:10101–10106

    Article  PubMed  CAS  Google Scholar 

  22. Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26:131–137

    Article  PubMed  CAS  Google Scholar 

  23. Hernanz-Falcon P, Rodriguez-Frade JM, Serrano A, Juan D, del Sol A, Soriano SF, Roncal F, Gomez L, Valencia A, Martinez AC, Mellado M (2004) Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol 5:216–223

    Article  PubMed  CAS  Google Scholar 

  24. Lemay J, Marullo S, Jockers R, Alizon M, Brelot A (2005) On the dimerization of CCR5. Nat Immunol 6:535, author reply 535–536

    Article  PubMed  CAS  Google Scholar 

  25. Hernanz-Falcon P, Rodriguez-Frade JM, Serrano A, Martinez AC, Mellado M (2005) Response to “On the dimerization of CCR5”. Nat Immunol 6:535–536

    Article  CAS  Google Scholar 

  26. Harikumar KG, Pinon DI, Miller LJ (2007) Transmembrane segment IV contributes a functionally important interface for oligomerization of the class II G protein-coupled secretin receptor. J Biol Chem 282:30363–30372

    Article  PubMed  CAS  Google Scholar 

  27. Harikumar KG, Happs RM, Miller LJ (2008) Dimerization in the absence of higher-order oligomerization of the G protein-coupled secretin receptor. Biochim Biophys Acta 1778:2555–2563

    Article  PubMed  CAS  Google Scholar 

  28. Gao F, Harikumar KG, Dong M, Lam PCH, Sexton PM, Christopoulos A, Bordner A, Abagyan R, Miller LJ (2009) Functional importance of a structurally distinct homodimeric complex of the family B G protein-coupled secretin receptor. Mol Pharmacol 76:264–274

    Article  PubMed  CAS  Google Scholar 

  29. Pioszak AA, Harikumar KG, Parker NR, Miller LJ, Xu HE (2010) Dimeric arrangement of the parathyroid hormone receptor and a structural mechanism for ligand-induced dissociation. J Biol Chem 285:12435–12444

    Article  PubMed  CAS  Google Scholar 

  30. Harikumar KG, Ball AM, Sexton PM, Miller LJ (2010) Importance of lipid-exposed residues in transmembrane segment four for family B calcitonin receptor homo-dimerization. Regul Pept 164:113–119

    Article  PubMed  CAS  Google Scholar 

  31. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  PubMed  CAS  Google Scholar 

  32. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the mu-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326

    Article  PubMed  CAS  Google Scholar 

  33. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485(7398):327–332

    Article  PubMed  CAS  Google Scholar 

  34. Wang J, He L, Combs CA, Roderiquez G, Norcross MA (2006) Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther 5:2474–2483

    Article  PubMed  CAS  Google Scholar 

  35. Lee B, Doranz BJ, Ratajczak MZ, Doms RW (1998) An intricate Web: chemokine receptors, HIV-1 and hematopoiesis. Stem Cells 16:79–88

    Article  PubMed  CAS  Google Scholar 

  36. de la Fuente M, Noble DN, Verma S, Nieman MT (2012) Mapping human protease-activated receptor 4 (PAR4) homodimer interface to transmembrane helix 4. J Biol Chem 287:10414–10423

    Article  PubMed  Google Scholar 

  37. Gurevich VV, Gurevich EV (2008) GPCR monomers and oligomers: it takes all kinds. Trends Neurosci 31:74–81

    Article  PubMed  CAS  Google Scholar 

  38. Khelashvili G, Dorff K, Shan J, Camacho-Artacho M, Skrabanek L, Vroling B, Bouvier M, Devi LA, George SR, Javitch JA, Lohse MJ, Milligan G, Neubig RR, Palczewski K, Parmentier M, Pin JP, Vriend G, Campagne F, Filizola M (2010) GPCR-OKB: the G protein coupled receptor oligomer knowledge base. Bioinformatics 26:1804–1805

    Article  PubMed  CAS  Google Scholar 

  39. Skrabanek L, Murcia M, Bouvier M, Devi L, George SR, Lohse MJ, Milligan G, Neubig R, Palczewski K, Parmentier M, Pin JP, Vriend G, Javitch JA, Campagne F, Filizola M (2007) Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics 8:177

    Article  PubMed  Google Scholar 

  40. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JET, Lazareno S, Molloy JE, Birdsall NJM (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA 107:2693–2698

    Article  PubMed  CAS  Google Scholar 

  41. Marullo S, Bouvier M (2007) Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol Sci 28:362–365

    Article  PubMed  CAS  Google Scholar 

  42. Milligan G, Bouvier M (2005) Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J 272:2914–2925

    Article  PubMed  CAS  Google Scholar 

  43. Ayoub MA, Pfleger KDG (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10:44–52

    Article  PubMed  CAS  Google Scholar 

  44. Issad T, Jockers R, Ali H, Haribabu B, Walker JM (2006) Bioluminescence resonance energy transfer to monitor protein–protein interactions. In: Walker JM (ed) Transmembrane signaling protocols, vol 332. Humana Press, New York, pp 195–209

    Chapter  Google Scholar 

  45. Achour L, Kamal M, Jockers R, Marullo S, Luttrell LM, Ferguson SSG (2011) Using quantitative BRET to assess G-protein-coupled receptor homo- and heterodimerization. In: Walker JM (ed) Signal transduction protocols, vol 756. Humana Press, New York, pp 183–200

    Chapter  Google Scholar 

  46. Kubale V, Drinovec L, Vrecl M (2012) Quantitative assessment of seven transmembrane receptors (7TMRs) oligomerization by bioluminescence resonance energy transfer (BRET) technology. In: Lapota DD (ed) Bioluminescence—recent advances in oceanic measurements and laboratory applications. InTech, Rijeka, pp 81–95

    Google Scholar 

  47. Pfleger KDG, Eidne KA (2006) Illuminating insights into protein–protein interactions using bioluminescence resonance energy transfer (BRET). Nat Meth 3:165–174

    Article  CAS  Google Scholar 

  48. Kocan M, Pfleger KDG, Willars GB, Challiss RAJ (2011) Study of GPCR–protein interactions by BRET. Receptor signal transduction protocols, vol 746. Humana Press, pp. 357–371

    Google Scholar 

  49. Hamdan FF, Percherancier Y, Breton B, Bouvier M (2006) Monitoring protein–protein interactions in living cells by bioluminescence resonance energy transfer (BRET). In Current protocols in neuroscience. Wiley, New York

    Google Scholar 

  50. Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354

    Article  PubMed  CAS  Google Scholar 

  51. James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Meth 3:1001–1006

    Article  CAS  Google Scholar 

  52. Comps-Agrar L, Maurel D, Rondard P, Pin J-P, Trinquet E, Prézeau L, Luttrell LM, Ferguson SSG (2011) Cell-surface protein–protein interaction analysis with time-resolved FRET and Snap-Tag Technologies: application to G-protein-coupled receptor oligomerization. Signal transduction protocols, vol 756. Humana Press, New York, pp. 201–214

    Google Scholar 

  53. Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives M-L, Newman A, Javitch J, Trinquet E, Manning M, Pin J-P, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594

    Article  PubMed  CAS  Google Scholar 

  54. Ferre S, Franco R (2010) Oligomerization of G-protein-coupled receptors: a reality. Curr Opin Pharmacol 10:1–5

    Article  PubMed  CAS  Google Scholar 

  55. McLean AJ, Milligan G (2000) Ligand regulation of green fluorescent protein-tagged forms of the human beta(1)- and beta(2)-adrenoceptors; comparisons with the unmodified receptors. Br J Pharmacol 130:1825–1832

    Article  PubMed  CAS  Google Scholar 

  56. Mercier J-FO, Salahpour A, Angers SP, Breit A, Bouvier M (2002) Quantitative assessment of beta1- and beta2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277:44925–44931

    Article  PubMed  CAS  Google Scholar 

  57. Salahpour A, Masri B (2007) Experimental challenge to a “rigorous” BRET analysis of GPCR oligomerization. Nat Meth 4:599–600

    Article  CAS  Google Scholar 

  58. Veatch W, Stryer L (1977) The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. J Mol Biol 113:89–102

    Article  PubMed  CAS  Google Scholar 

  59. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. J Biol Chem 276:29188–29194

    Article  PubMed  CAS  Google Scholar 

  60. Patterson G, Day RN, Piston D (2001) Fluorescent protein spectra. J Cell Sci 114:837–838

    PubMed  CAS  Google Scholar 

  61. Robitaille M, Héroux I, Baragli A, Hébert TE, Rich PB, Douillet C (2009) Novel tools for use in bioluminescence resonance energy transfer (BRET) assays. Bioluminescence. Vol 574. Humana Press, pp. 215–234

    Google Scholar 

  62. Kaczor AA, Selent J (2011) Oligomerization of G-protein-coupled receptors: biochemical and biophysical methods. Curr Med Chem 18:4606–4634

    Article  PubMed  CAS  Google Scholar 

  63. Ciruela F, Vilardaga J-P, Fernandez-Duenas V (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28:407–415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health PSI:Biology grants U01 GM094612 (T.M.H. and R.A.) and U54 GM094618 (R.C.S.) and by NIH grants R01 GM081763 (T.M.H.) and R01 GM071872 (R.A.). C.T.G and B.S. were supported by the Cellular and Molecular Pharmacology Training Grant T32 GM007752. D.H. was supported by NIH NRSA grant F32 GM083463. B.W. was supported by NIH grant R01 Al100604 and the grant 11JC1414800 awarded by Science and Technology Commission of Shanghai Municipality. The authors would like to thank Jeffrey Velasquez (TSRI) for help with molecular biology, Tam Trinh and Kirk Allin (TSRI) for help with the baculovirus expression, and M. Bouvier (University of Montreal) for the Rluc and YFP coding sequence containing vectors used to produce all of our BRET constructs. We also thank Pascale Charest (University of Arizona) for valuable discussions regarding the BRET assays and Goran Pljevaljcic (TSRI) for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kufareva, I. et al. (2013). A Novel Approach to Quantify G-Protein-Coupled Receptor Dimerization Equilibrium Using Bioluminescence Resonance Energy Transfer. In: Cardona, A., Ubogu, E. (eds) Chemokines. Methods in Molecular Biology, vol 1013. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-426-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-426-5_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-425-8

  • Online ISBN: 978-1-62703-426-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics