Skip to main content

Protein Disulfide Bond Formation in the Periplasm: Determination of the In Vivo Redox State of Cysteine Residues

  • Protocol
  • First Online:
Bacterial Cell Surfaces

Part of the book series: Methods in Molecular Biology ((MIMB,volume 966))

Abstract

Many proteins secreted to the bacterial cell envelope contain cysteine residues that are involved in disulfide bonds. These disulfides either play a structural role, increasing protein stability, or reversibly form in the catalytic site of periplasmic oxidoreductases. Monitoring the in vivo redox state of cysteine residues, i.e., determining whether those cysteines are oxidized to a disulfide bond or not, is therefore required to fully characterize the function and structural properties of numerous periplasmic proteins. Here, we describe a reliable and rapid method based on trapping reduced cysteine residues with 4′-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid (AMS), a maleimide compound. We use theEscherichia coliDsbA protein to illustrate the method, which can be applied to all envelope proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dutton RJ, Boyd D, Berkmen M, Beckwith J (2008) Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc Natl Acad Sci U S A 105:11933–8

    Article  PubMed  CAS  Google Scholar 

  2. Vertommen D, Depuydt M, Pan J, Leverrier P, Knoops L, Szikora JP, Messens J, Bardwell JC, Collet JF (2008) The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. Mol Microbiol 67:336–49

    PubMed  CAS  Google Scholar 

  3. Sone M, Akiyama Y, Ito K (1997) Differentialin vivoroles played by DsbA and DsbC in the formation of protein disulfide bonds. J Biol Chem 272:10349–52

    Article  PubMed  CAS  Google Scholar 

  4. Messens J, Collet JF, Van Belle K, Brosens E, Loris R, Wyns L (2007) The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem 282:31302–7

    Article  PubMed  CAS  Google Scholar 

  5. Leverrier P, Declercq JP, Denoncin K, Vertommen D, Hiniker A, Cho SH, Collet JF (2011) Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J Biol Chem 286:16734–42

    Article  PubMed  CAS  Google Scholar 

  6. Denoncin K, Vertommen D, Paek E, Collet JF (2010) The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential beta-barrel protein LptD. J Biol Chem 285:29425–33

    Article  PubMed  CAS  Google Scholar 

  7. Ruiz N, Chng SS, Hiniker A, Kahne D, Silhavy TJ (2010) Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. Proc Natl Acad Sci U S A 107:12245–50

    Article  PubMed  CAS  Google Scholar 

  8. Braun M, Silhavy TJ (2002) Imp/OstA is required for cell envelope biogenesis inEscherichia coli. Mol Microbiol 45:1289–302

    Article  PubMed  CAS  Google Scholar 

  9. Bardwell JC, McGovern K, Beckwith J (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67:581–9

    Article  PubMed  CAS  Google Scholar 

  10. Martin JL, Bardwell JC, Kuriyan J (1993) Crystal structure of the DsbA protein required for disulphide bond formationin vivo. Nature 365:464–8

    Article  PubMed  CAS  Google Scholar 

  11. Collet JF, Messens J (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal 13:1205–16

    Article  PubMed  CAS  Google Scholar 

  12. Bardwell JC, Lee JO, Jander G, Martin N, Belin D, Beckwith J (1993) A pathway for disulfide bond formationin vivo. Proc Natl Acad Sci U S A 90:1038–42

    Article  PubMed  CAS  Google Scholar 

  13. Bader M, Muse W, Ballou DP, Gassner C, Bardwell JC (1999) Oxidative protein folding is driven by the electron transport system. Cell 98:217–27

    Article  PubMed  CAS  Google Scholar 

  14. Grauschopf U, Winther JR, Korber P, Zander T, Dallinger P, Bardwell JC (1995) Why is DsbA such an oxidizing disulfide catalyst? Cell 83:947–55

    Article  PubMed  CAS  Google Scholar 

  15. Rietsch A, Belin D, Martin N, Beckwith J (1996) Anin vivopathway for disulfide bond isomerization inEscherichia coli. Proc Natl Acad Sci U S A 93:13048–53

    Article  PubMed  CAS  Google Scholar 

  16. McCarthy AA, Haebel PW, Torronen A, Rybin V, Baker EN, Metcalf P (2000) Crystal structure of the protein disulfide bond isomerase, DsbC, fromEscherichia coli. Nat Struct Biol 7:196–9

    Article  PubMed  CAS  Google Scholar 

  17. Joly JC, Swartz JR (1997)In vitroandin vivoredox states of theEscherichia coliperiplasmic oxidoreductases DsbA and DsbC. Biochemistry 36:10067–72

    Article  PubMed  CAS  Google Scholar 

  18. Katzen F, Beckwith J (2000) Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103:769–79

    Article  PubMed  CAS  Google Scholar 

  19. Rietsch A, Bessette P, Georgiou G, Beckwith J (1997) Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol 179:6602–8

    PubMed  CAS  Google Scholar 

  20. Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL (2011) Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 14:1729–60

    Article  PubMed  CAS  Google Scholar 

  21. Casadaban MJ (1976) Transposition and fusion of thelacgenes to selected promoters inEscherichia coliusing bacteriophage lambda and Mu. J Mol Biol 104:541–55

    Article  PubMed  CAS  Google Scholar 

  22. Miller JH (1992) A short course in bacterial genetics: laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council (FP7/2007–2013) ERC independent researcher starting grant 282335—Sulfenic to J.F.C. J.F.C. is a Chercheur Qualifié and PL a Chargé de Recherches of the Belgian FNRS. KD and VN are supported by a grant from the FRIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Collet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Denoncin, K., Nicolaes, V., Cho, SH., Leverrier, P., Collet, JF. (2013). Protein Disulfide Bond Formation in the Periplasm: Determination of the In Vivo Redox State of Cysteine Residues. In: Delcour, A. (eds) Bacterial Cell Surfaces. Methods in Molecular Biology, vol 966. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-245-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-245-2_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-244-5

  • Online ISBN: 978-1-62703-245-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics