Skip to main content

S100A1 Gene Therapy in Small and Large Animals

  • Protocol
  • First Online:
Calcium-Binding Proteins and RAGE

Part of the book series: Methods in Molecular Biology ((MIMB,volume 963))

Abstract

Myocardial in vivo gene delivery is a valuable technique to investigate the relevance of a protein of interest on cardiac contractile function, hypertrophy, and energy state in healthy animals as well as in a variety of models of cardiovascular disease. Rodent models are used to screen effects and to investigate molecular mechanisms, while large animal models, more closely reflecting human anatomy, physiology, and function, are inevitable for translational therapeutic approaches. The gene of interest, whose expression is driven by a non-cardioselective or cardioselective promotor is cloned into a viral vector. This vehicle is then delivered using an appropriate administration route to target the heart and to achieve efficient protein expression in myocardium.

Here we describe myocardial gene therapy in small and large animal models of postischemic heart failure used to reveal the positive inotrope, antihypertrophic, and pro-energetic action of the small calcium sensor protein S100A1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. del Monte F, Hajjar R (2003) Targeting calium cycling proteins in heart failure through gene transfer. J Physiol 546:49–61

    Article  PubMed  Google Scholar 

  2. Wehrens XH, Marks AR (2004) Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nat Rev Drug Discov 3:565–573

    Article  PubMed  CAS  Google Scholar 

  3. Wasala NB, Shin JH, Duan D (2011) The evolution of heart gene delivery vectors. J Gene Med 13:557–565

    Article  PubMed  CAS  Google Scholar 

  4. Raake PW, Tscheschner H, Reinkober J, Ritterhoff J, Katus HA, Koch WJ, Most P (2011) Gene therapy targets in heart failure: the path to translation. Clin Pharmacol Ther 90:542–553

    Article  PubMed  CAS  Google Scholar 

  5. Heine HL, Leong HS, Rossi FM, McManus BM, Podor TJ (2005) Strategies of conditional gene expression in myocardium: an overview. Methods Mol Med 112:109–154

    Article  PubMed  CAS  Google Scholar 

  6. Ishikawa K, Tilemann L, Fish K, Hajjar RJ (2011) Gene delivery methods in cardiac gene therapy. J Gene Med 13:566–572

    Article  PubMed  CAS  Google Scholar 

  7. Dixon JA, Spinale FG (2009) Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2:262–271

    Article  PubMed  Google Scholar 

  8. Pleger ST, Boucher M, Most P, Koch WJ (2007) Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy. J Card Fail 13:401–414

    Article  PubMed  CAS  Google Scholar 

  9. Raake PW, Hinkel R, Müller S, Delker S, Kreuzpointner R, Kupatt C, Katus HA, Kleinschmidt JA, Boekstegers P, Müller OJ (2008) Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Ther 15:12–17

    Article  PubMed  CAS  Google Scholar 

  10. Emani SM, Shah AS, Bowman MK, Emani S, Wilson K, Glower DD, Koch WJ (2003) Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Mol Ther 8:306–313

    Article  PubMed  CAS  Google Scholar 

  11. Wang J, Faust SM, Rabinowitz JE (2011) The next step in gene delivery: molecular engineering of adeno-associated virus serotypes. J Mol Cell Cardiol 50:793–802

    Article  PubMed  CAS  Google Scholar 

  12. Raake P, von Degenfeld G, Hinkel R, Vachenauer R, Sandner T, Beller S, Andrees M, Kupatt C, Schuler G, Boekstegers P (2004) Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol 44:1124–1129

    Article  PubMed  CAS  Google Scholar 

  13. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R, Schinkel S, Leuchs B, Ludwig J, Qiu G, Weber C, Raake P, Koch WJ, Katus HA, Müller OJ, Most P (2011) Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 20:92ra64

    Article  Google Scholar 

  14. Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W, Gao E, Dasgupta A, Rengo G, Remppis A, Katus HA, Eckhart AD, Rabinowitz JE, Koch WJ (2007) Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 115:2506–2515

    Article  PubMed  CAS  Google Scholar 

  15. Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M, Boerries M, Remppis A, Katus HA, Most P (2009) S100A1 in ­cardiovascular health and disease: closing the gap between basic science and clinical therapy. J Mol Cell Cardiol 47:445–455

    Article  PubMed  CAS  Google Scholar 

  16. Boerries M, Most P, Gledhill JR, Walker JE, Katus HA, Koch WJ, Aebi U, Schoenenberger CA (2007) Ca2+ -dependent interaction of S100A1 with F1-ATPase leads to an increased ATP content in cardiomyocytes. Mol Cell Biol 27:4365–4373

    Article  PubMed  CAS  Google Scholar 

  17. Most P, Bernotat J, Ehlermann P, Pleger ST, Reppel M, Börries M, Niroomand F, Pieske B, Janssen PM, Eschenhagen T, Karczewski P, Smith GL, Koch WJ, Katus HA, Remppis A (2001) S100A1: a regulator of myocardial contractility. Proc Natl Acad Sci USA 98:13889–13894

    Article  PubMed  CAS  Google Scholar 

  18. Most P, Remppis A, Pleger ST, Löffler E, Ehlermann P, Bernotat J, Kleuss C, Heierhorst J, Ruiz P, Witt H, Karczewski P, Mao L, Rockman HA, Duncan SJ, Katus HA, Koch WJ (2003) Transgenic overexpression of the Ca2+ binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance. J Biol Chem 278:33809–33817

    Article  PubMed  CAS  Google Scholar 

  19. Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J, Remppis A, Pleger ST, DeGeorge BR Jr, Eckhart AD, Feldman AM, Koch WJ (2006) Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation 114:1258–1268

    Article  PubMed  CAS  Google Scholar 

  20. Tsoporis JN, Marks A, Zimmer DB, McMahon C, Parker TG (2003) The myocardial protein S100A1 plays a role in the maintenance of normal gene expression in the adult heart. Mol Cell Biochem 242:27–33

    Article  PubMed  CAS  Google Scholar 

  21. Völkers M, Loughrey CM, Macquaide N, Remppis A, DeGeorge BR Jr, Wegner FV, Friedrich O, Fink RH, Koch WJ, Smith GL, Most P (2007) S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium 41:135–143

    Article  PubMed  Google Scholar 

  22. Most P, Pleger ST, Völkers M, Heidt B, Boerries M, Weichenhan D, Löffler E, Janssen PM, Eckhart AD, Martini J, Williams ML, Katus HA, Remppis A, Koch WJ (2004) Cardiac adenoviral S100A1 gene transfer rescues failing myocardium. J Clin Invest 114:1550–1563

    PubMed  CAS  Google Scholar 

  23. Pleger ST, Remppis A, Heidt B, Völkers M, Chuprun JK, Kuhn M, Zhou RH, Gao E, Szabo G, Weichenhan D, Müller OJ, Eckhart AD, Katus HA, Koch WJ, Most P (2005) S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction. Mol Ther 12:1120–1129

    Article  PubMed  CAS  Google Scholar 

  24. Rohde D, Ritterhoff J, Voelkers M, Katus HA, Parker TG, Most P (2010) S100A1: a multifaceted therapeutic target in cardiovascular disease. J Cardiovasc Transl Res 3:525–537, Review

    Article  PubMed  Google Scholar 

  25. Völkers M, Rohde D, Goodman C, Most P (2010) S100A1: a regulator of striated muscle sarcoplasmic reticulum Ca2+ handling, sarcomeric, and mitochondrial function. J Biomed Biotechnol 2010:178614

    Article  PubMed  Google Scholar 

  26. Brinks H, Rohde D, Voelkers M, Qiu G, Pleger ST, Herzog N, Rabinowitz J, Ruhparwar A, Silvestry S, Lerchenmüller C, Mather PJ, Eckhart AD, Katus HA, Carrel T, Koch WJ, Most P (2011) S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes. J Am Coll Cardiol 58:966–973

    Article  PubMed  CAS  Google Scholar 

  27. Maurice JP, Hata JA, Shah AS, White DC, McDonald PH, Dolber PC, Wilson KH, Lefkowitz RJ, Glower DD, Koch WJ (1999) Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest 104:21–29

    Article  PubMed  CAS  Google Scholar 

  28. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK, Dec GW, Semigran MJ, Rosenzweig A (1998) Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 95:5251–5256

    Article  PubMed  CAS  Google Scholar 

  29. Hoshijima M, Ikeda Y, Iwanaga Y, Minamisawa S, Date MO, Gu Y, Iwatate M, Li M, Wang L, Wilson JM, Wang Y, Ross J Jr, Chien KR (2002) Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 8:864–871

    PubMed  CAS  Google Scholar 

  30. Boekstegers P, von Degenfeld G, Giehrl W, Heinrich D, Hullin R, Kupatt C, Steinbeck G, Baretton G, Middeler G, Katus HA, Franz WM (2000) Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther 7:232–240

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants: R01HL92130 and R01HL92130-02S1 (P.M.); Deutsche Forschungsgemeinschaft: 562/1-1 (P.M. and S.T.P.); and the Bundesministerium für Bildung und Forschung: 01GU0527 (P.M., H.A.K.); the Pennsylvania-Delaware Affiliate of the American Heart Association (S.T.P.); the Lilly-Stipendium of the Deutsche Gesellschaft für Kardiologie (S.T.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Most .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Most, P., Raake, P., Weber, C., Katus, H.A., Pleger, S.T. (2013). S100A1 Gene Therapy in Small and Large Animals. In: Heizmann, C. (eds) Calcium-Binding Proteins and RAGE. Methods in Molecular Biology, vol 963. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-230-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-230-8_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-229-2

  • Online ISBN: 978-1-62703-230-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics