Skip to main content

MicroRNAs in Skin and Wound Healing

  • Protocol
  • First Online:
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 936))

Abstract

MicroRNAs (miRNAs) are small noncoding RNA molecules ∼22 nucleotides in length that can post-transcriptionally repress gene expression. MiRNAs bind to their target messenger RNAs (mRNAs), leading to mRNA degradation or suppression of translation. miRNAs have recently been shown to play pivotal roles in skin development and are linked to various skin pathologies, cancer, and wound healing. Chronic wounds represent a major health burden and drain on resources and developing more effective treatments is therefore a necessity. Increase in the understanding of the regulation of chronic wound biology is therefore required to develop newer therapies. This review focuses on the role of miRNAs in cutaneous biology, the various methods of miRNA modulation, and the therapeutic opportunities in treatment of skin diseases and wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  2. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    Article  PubMed  CAS  Google Scholar 

  3. Banerjee J, Chan YC, Sen CK (2011) MicroRNAs in skin and wound healing. Physiol Genomics 43(10):543–556

    Article  PubMed  CAS  Google Scholar 

  4. Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180(2):273–284

    Article  PubMed  CAS  Google Scholar 

  5. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217

    Article  PubMed  CAS  Google Scholar 

  6. Andl T, Murchison EP, Liu F, Zhang Y, Yunta-Gonzalez M, Tobias JW, Andl CD, Seykora JT, Hannon GJ, Millar SE (2006) The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol 16(10):1041–1049

    Article  PubMed  CAS  Google Scholar 

  7. Yi R, O’Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, Fuchs E (2006) Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 38(3):356–362

    Article  PubMed  CAS  Google Scholar 

  8. Yi R, Pasolli HA, Landthaler M, Hafner M, Ojo T, Sheridan R, Sander C, O’Carroll D, Stoffel M, Tuschl T, Fuchs E (2009) Dgcr8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci USA 106(2):498–502

    Article  PubMed  CAS  Google Scholar 

  9. Zhang L, Stokes N, Polak L, Fuchs E (2011) Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8(3):294–308

    Article  PubMed  CAS  Google Scholar 

  10. Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452(7184):225–229

    Article  PubMed  CAS  Google Scholar 

  11. Hildebrand J, Rutze M, Walz N, Gallinat S, Wenck H, Deppert W, Grundhoff A, Knott A (2011) A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol 131(1):20–29

    Article  PubMed  CAS  Google Scholar 

  12. Roy S, Sen CK (2011) MiRNA in innate immune responses: novel players in wound inflammation. Physiol Genomics 43(10):557–565

    Article  PubMed  CAS  Google Scholar 

  13. Sen CK (2009) Wound healing essentials: let there be oxygen. Wound Repair Regen 17(1):1–18

    Article  PubMed  Google Scholar 

  14. Zhu N, Zhang D, Chen S, Liu X, Lin L, Huang X, Guo Z, Liu J, Wang Y, Yuan W, Qin Y (2011) Endothelial enriched microRNAs regulate angiotensin ii-induced endothelial inflammation and migration. Atherosclerosis 215(2):286–293

    Article  PubMed  CAS  Google Scholar 

  15. Sen CK, Gordillo GM, Khanna S, Roy S (2009) Micromanaging vascular biology: tiny microRNAs play big band. J Vasc Res 46(6):527–540

    Article  PubMed  CAS  Google Scholar 

  16. Shilo S, Roy S, Khanna S, Sen CK (2008) Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arterioscler Thromb Vasc Biol 28(3):471–477

    Article  PubMed  CAS  Google Scholar 

  17. Chan YC, Khanna S, Roy S, Sen CK (2011) Mir-200b targets ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 286(3):2047–2056

    Article  PubMed  CAS  Google Scholar 

  18. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) Mir-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284

    Article  PubMed  CAS  Google Scholar 

  19. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038

    Article  PubMed  CAS  Google Scholar 

  20. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38(9):1060–1065

    Article  PubMed  CAS  Google Scholar 

  21. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713

    Article  PubMed  CAS  Google Scholar 

  22. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y (2006) MiRNA-directed regulation of vegf and other angiogenic factors under hypoxia. PLoS One 1:e116

    Article  PubMed  Google Scholar 

  23. Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin S, Han J (2008) Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 118(5):1944–1954

    Article  PubMed  CAS  Google Scholar 

  24. Brauchle M, Angermeyer K, Hubner G, Werner S (1994) Large induction of keratinocyte growth factor expression by serum growth factors and pro-inflammatory cytokines in cultured fibroblasts. Oncogene 9(11):3199–3204

    PubMed  CAS  Google Scholar 

  25. Takehara K (2000) Growth regulation of skin fibroblasts. J Dermatol Sci 24(suppl 1):S70–S77

    Article  PubMed  CAS  Google Scholar 

  26. Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9(6):1072–1083

    Article  PubMed  CAS  Google Scholar 

  27. Guimbellot JS, Erickson SW, Mehta T, Wen H, Page GP, Sorscher EJ, Hong JS (2009) Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis. BMC Med Genomics 2:15

    Article  PubMed  Google Scholar 

  28. Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins iscu1/2. Cell Metab 10(4):273–284

    Article  PubMed  CAS  Google Scholar 

  29. Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, Kowal-Bielecka O, Gay RE, Michel BA, Distler JH, Gay S, Distler O (2010) MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 62(6):1733–1743

    Article  PubMed  CAS  Google Scholar 

  30. Beanes SR, Hu FY, Soo C, Dang CM, Urata M, Ting K, Atkinson JB, Benhaim P, Hedrick MH, Lorenz HP (2002) Confocal microscopic analysis of scarless repair in the fetal rat: defining the transition. Plast Reconstr Surg 109(1):160–170

    Article  PubMed  Google Scholar 

  31. Beanes SR, Dang C, Soo C, Ting K (2003) Skin repair and scar formation: the central role of tgf-beta. Expert Rev Mol Med 5(8):1–22

    Article  PubMed  Google Scholar 

  32. Cheng J, Yu H, Deng S, Shen G (2010) MicroRNA profiling in mid- and late-gestational fetal skin: implication for scarless wound healing. Tohoku J Exp Med 221(3):203–209

    Article  PubMed  CAS  Google Scholar 

  33. Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY, Sun SH (2009) Repression of the mir-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28(18):2719–2732

    Article  PubMed  CAS  Google Scholar 

  34. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of mir-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105(35):13027–13032

    Article  PubMed  Google Scholar 

  35. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in tgf-beta-induced collagen expression via inhibition of e-box repressors. Proc Natl Acad Sci USA 104(9):3432–3437

    Article  PubMed  CAS  Google Scholar 

  36. Tinkle CL, Lechler T, Pasolli HA, Fuchs E (2004) Conditional targeting of e-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc Natl Acad Sci USA 101(2):552–557

    Article  PubMed  CAS  Google Scholar 

  37. Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gunzel D, Fromm M, Kemler R, Krieg T, Niessen CM (2005) E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 24(6):1146–1156

    Article  PubMed  CAS  Google Scholar 

  38. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The mir-200 family determines the epithelial phenotype of cancer cells by targeting the e-cadherin repressors zeb1 and zeb2. Genes Dev 22(7):894–907

    Article  PubMed  CAS  Google Scholar 

  39. Korpal M, Lee ES, Hu G, Kang Y (2008) The mir-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of e-cadherin transcriptional repressors zeb1 and zeb2. J Biol Chem 283(22):14910–14914

    Article  PubMed  CAS  Google Scholar 

  40. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The mir-200 family and mir-205 regulate epithelial to mesenchymal transition by targeting zeb1 and sip1. Nat Cell Biol 10(5):593–601

    Article  PubMed  CAS  Google Scholar 

  41. Kosmadaki MG, Naif A, Hee-Young P (2010) Recent progresses in understanding pigmentation. G Ital Dermatol Venereol 145(1):47–55

    PubMed  CAS  Google Scholar 

  42. Neer RM (1975) The evolutionary significance of vitamin d, skin pigment, and ultraviolet light. Am J Phys Anthropol 43(3):409–416

    Article  PubMed  CAS  Google Scholar 

  43. Zhu Z, He J, Jia X, Jiang J, Bai R, Yu X, Lv L, Fan R, He X, Geng J, You R, Dong Y, Qiao D, Lee KB, Smith GW, Dong C (2010) MicroRNA-25 functions in regulation of pigmentation by targeting the transcription factor MITF in alpaca (lama pacos) skin melanocytes. Domest Anim Endocrinol 38(3):200–209

    Article  PubMed  CAS  Google Scholar 

  44. Wu D, Chen JS, Chang DC, Lin SL (2008) Mir-434-5p mediates skin whitening and lightening. Clin Cosmet Investig Dermatol 1:19–35

    PubMed  CAS  Google Scholar 

  45. Biswas S, Roy S, Banerjee J, Hussain SR, Khanna S, Meenakshisundaram G, Kuppusamy P, Friedman A, Sen CK (2010) Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci USA 107(15):6976–6981

    Article  PubMed  CAS  Google Scholar 

  46. Roy S, Biswas S, Khanna S, Gordillo G, Bergdall V, Green J, Marsh CB, Gould LJ, Sen CK (2009) Characterization of a preclinical model of chronic ischemic wound. Physiol Genomics 37(3):211–224

    Article  PubMed  CAS  Google Scholar 

  47. Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F (2010) MicroRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther 125(1):92–104

    Article  PubMed  CAS  Google Scholar 

  48. Weiler J, Hunziker J, Hall J (2006) Anti-miRNA oligonucleotides (amos): ammunition to target miRNAs implicated in human disease? Gene Ther 13(6):496–502

    Article  PubMed  CAS  Google Scholar 

  49. Roy S, Patel D, Khanna S, Gordillo GM, Biswas S, Friedman A, Sen CK (2007) Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue. Proc Natl Acad Sci USA 104(36):14472–14477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Wound healing research in the author’s laboratory is funded by NIH awards GM 077185 and GM 069589 to CK Sen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan K. Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Banerjee, J., Sen, C.K. (2013). MicroRNAs in Skin and Wound Healing. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology, vol 936. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-083-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-083-0_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-082-3

  • Online ISBN: 978-1-62703-083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics