Skip to main content

Retinal Fundus Imaging in Mouse Models of Retinal Diseases

  • Protocol
  • First Online:
Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 935))

Abstract

The development of in vivo retinal fundus imaging in mice has opened a new research horizon, not only in ophthalmic research. The ability to monitor the dynamics of vascular and cellular changes in pathological conditions, such as neovascularization or degeneration, longitudinally without the need to sacrifice the mouse, permits longer observation periods in the same animal. With the application of the high-resolution confocal scanning laser ophthalmoscopy in experimental mouse models, access to a large spectrum of imaging modalities in vivo is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Leeuwen R et al (2003) Epidemiology of age-related maculopathy: a review. Eur J Epidemiol 18:845–854

    Article  PubMed  Google Scholar 

  2. Grossniklaus HE et al (2010) Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res 29:500–519

    Article  PubMed  Google Scholar 

  3. Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290

    Article  PubMed  CAS  Google Scholar 

  4. Joussen AM et al (2003) Molecular mechanisms of vasculogenesis and angiogenesis. What regulates vascular growth? Ophthalmologe 100:284–291

    Article  PubMed  CAS  Google Scholar 

  5. Sharp PF, Manivannan A (1997) The scanning laser ophthalmoscope. Phys Med Biol 42:951–966

    Article  PubMed  CAS  Google Scholar 

  6. Paques M et al (2007) Panretinal, high-resolution color photography of the mouse fundus. Invest Ophthalmol Vis Sci 48:2769–2774

    Article  PubMed  Google Scholar 

  7. Bermudez MA et al (2011) Time course of cold cataract development in anesthetized mice. Curr Eye Res 36:278–284

    Article  PubMed  CAS  Google Scholar 

  8. Terman A (2006) Catabolic insufficiency and aging. Ann N Y Acad Sci 1067:27–36

    Article  PubMed  CAS  Google Scholar 

  9. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    Article  PubMed  CAS  Google Scholar 

  10. Seehafer SS, Pearce DA (2006) You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol Aging 27:576–588

    Article  PubMed  CAS  Google Scholar 

  11. Eldred GE et al (1982) Lipofuscin: resolution of discrepant fluorescence data. Science 216:757–759

    Article  PubMed  CAS  Google Scholar 

  12. Marmorstein AD et al (2002) Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s Membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci 43:2435–2441

    PubMed  Google Scholar 

  13. Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–726

    Article  PubMed  CAS  Google Scholar 

  14. Sparrow JR et al (1999) A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 40:2988–2995

    PubMed  CAS  Google Scholar 

  15. Schmitz-Valckenberg S et al (2008) Fundus autofluorescence imaging: review and perspectives. Retina 28:385–409

    Article  PubMed  Google Scholar 

  16. Bridges CD (1977) Rhodopsin regeneration in rod outer segments: utilization of 11-cis retinal and retinol. Exp Eye Res 24:571–580

    Article  PubMed  CAS  Google Scholar 

  17. Jaffe GJ, Caprioli J (2004) Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 137:156–169

    Article  PubMed  Google Scholar 

  18. Hawes NL et al (1999) Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5:22

    PubMed  CAS  Google Scholar 

  19. Chang B et al (2002) Retinal degeneration mutants in the mouse. Vision Res 42:517–525

    Article  PubMed  CAS  Google Scholar 

  20. Eter N et al (2008) In vivo visualization of dendritic cells, macrophages, and microglial cells responding to laser-induced damage in the fundus of the eye. Invest Ophthalmol Vis Sci 49:3649–3658

    Article  PubMed  Google Scholar 

  21. Tobe T et al (1998) Evolution of neovascularization in mice with overexpression of vascular endothelial growth factor in photoreceptors. Invest Ophthalmol Vis Sci 39:180–188

    PubMed  CAS  Google Scholar 

  22. Smith LE et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    PubMed  CAS  Google Scholar 

  23. Spilsbury K et al (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157:135–144

    Article  PubMed  CAS  Google Scholar 

  24. Schmack I et al (2009) Modulation of choroidal neovascularization by subretinal injection of retinal pigment epithelium and polystyrene microbeads. Mol Vis 15:146–161

    PubMed  CAS  Google Scholar 

  25. Shen D et al (2006) Exacerbation of retinal degeneration and choroidal neovascularization induced by subretinal injection of matrigel in CCL2/MCP-1-deficient mice. Ophthalmic Res 38:71–73

    Article  PubMed  CAS  Google Scholar 

  26. Giove TJ et al (2009) Increased neuronal nitric oxide synthase activity in retinal neurons in early diabetic retinopathy. Mol Vis 15:2249–2258

    PubMed  CAS  Google Scholar 

  27. Zhu SS et al (2011) Wld (S) protects against peripheral neuropathy and retinopathy in an experimental model of diabetes in mice. Diabetologia 54(9):2440–2450

    Article  PubMed  CAS  Google Scholar 

  28. Kern TS et al (2010) Validation of structural and functional lesions of diabetic retinopathy in mice. Mol Vis 16:2121–2131

    PubMed  CAS  Google Scholar 

  29. Larina IV et al (2009) A membrane associated mCherry fluorescent reporter line for studying vascular remodeling and cardiac function during murine embryonic development. Anat Rec (Hoboken) 292:333–341

    Article  Google Scholar 

  30. Poche RA et al (2009) The Flk1-myr::mCherry mouse as a useful reporter to characterize multiple aspects of ocular blood vessel development and disease. Dev Dyn 238:2318–2326

    Article  PubMed  Google Scholar 

  31. Jung S et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  PubMed  CAS  Google Scholar 

  32. Kuziel WA et al (1997) Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA 94:12053–12058

    Article  PubMed  CAS  Google Scholar 

  33. Ambati J et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397

    Article  PubMed  CAS  Google Scholar 

  34. Tuo J et al (2007) Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Invest Ophthalmol Vis Sci 48:3827–3836

    Article  PubMed  Google Scholar 

  35. Takeda A et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460:225–230

    Article  PubMed  CAS  Google Scholar 

  36. Malek G et al (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci USA 102:11900–11905

    Article  PubMed  CAS  Google Scholar 

  37. Okamoto N et al (1997) Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol 151:281–291

    PubMed  CAS  Google Scholar 

  38. Heckenlively JR et al (2003) Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23:518–522

    Article  PubMed  Google Scholar 

  39. Won J et al (2011) Mouse model resources for vision research. J Ophthalmol 2011:391384

    PubMed  Google Scholar 

  40. Huber G et al (2009) Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50:5888–5895

    Article  PubMed  Google Scholar 

  41. Kohler K et al (1997) Animal models for retinitis pigmentosa research. Klin Monbl Augenheilkd 211:84–93

    Article  PubMed  CAS  Google Scholar 

  42. Van Hooser JP et al (2000) Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc Natl Acad Sci USA 97:8623–8628

    Article  PubMed  Google Scholar 

  43. Seeliger MW et al (2005) In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vision Res 45:3512–3519

    Article  PubMed  Google Scholar 

  44. de la Cera EG et al (2006) Optical aberrations in the mouse eye. Vision Res 46:2546–2553

    Article  PubMed  Google Scholar 

  45. Marneros AG et al (2007) Endogenous endostatin inhibits choroidal neovascularization. FASEB J 21:3809–3818

    Article  PubMed  CAS  Google Scholar 

  46. Sheets KG et al (2010) Neuroprotectin D1 attenuates laser-induced choroidal neovascularization in mouse. Mol Vis 16:320–329

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Eter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alex, A.F., Heiduschka, P., Eter, N. (2012). Retinal Fundus Imaging in Mouse Models of Retinal Diseases. In: Weber, B., LANGMANN, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 935. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-080-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-080-9_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-079-3

  • Online ISBN: 978-1-62703-080-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics