Skip to main content

Site-Specific Labeling of His-Tagged Nanobodies with 99mTc: A Practical Guide

  • Protocol
  • First Online:
Single Domain Antibodies

Abstract

99mTc-tricarbonyl chemistry provides an elegant technology to site-specifically radiolabel histidine-tagged biomolecules. Considering their unique biochemical properties, this straightforward technology is particularly suited for Nanobodies. This chapter gives a detailed guide to generate highly specific Nanobody-derived radiotracers for both in vitro binding studies and in vivo molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andros G, Harper PV, Lathrop KA (1965) Pertechnetate-99m localization in man with applications to thyroid scanning and the study of thyroid physiology. J Clin Endocrinol Metab 25:1067–1076

    Article  PubMed  CAS  Google Scholar 

  2. Mandalapu BP, Amato M, Stratmann HG (1999) Technetium Tc 99m sestamibi myocardial perfusion imaging: current role for evaluation of prognosis. Chest 115:1684–1694

    Article  PubMed  CAS  Google Scholar 

  3. Richter WS et al (2011) 99mTc-besilesomab (Scintimun) in peripheral osteomyelitis: comparison with 99mTc-labelled white blood cells. Eur J Nucl Med Mol Imaging 38:899–910

    Article  PubMed  Google Scholar 

  4. Schibli R, Schubiger PA (2002) Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med Mol Imaging 29:1529–1542

    Article  PubMed  CAS  Google Scholar 

  5. Alberto R et al (2001) Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [(99m)Tc(OH2)3(CO)3]+. J Am Chem Soc 123:3135–3136

    Article  PubMed  CAS  Google Scholar 

  6. Egli A et al (1999) Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J Nucl Med 40:1913–1917

    PubMed  CAS  Google Scholar 

  7. Waibel R et al (1999) Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat Biotechnol 17:897–901

    Article  PubMed  CAS  Google Scholar 

  8. Du J et al (2001) Technetium-99m labelling of glycosylated somatostatin-14. Appl Radiat Isot 55:181–187

    Article  PubMed  CAS  Google Scholar 

  9. Willuda J et al (1999) High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res 59:5758–5767

    PubMed  CAS  Google Scholar 

  10. Zahnd C et al (2010) Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res 70:1595–1605

    Article  PubMed  CAS  Google Scholar 

  11. Orlova A et al (2006) Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumors. J Nucl Med 47:512–519

    PubMed  CAS  Google Scholar 

  12. Hamers-Casterman C et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  PubMed  CAS  Google Scholar 

  13. Vincke C et al (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284:3273–3284

    Article  PubMed  CAS  Google Scholar 

  14. Dumoulin M et al (2002) Single-domain antibody fragments with high conformational stability. Protein Sci 11:500–515

    Article  PubMed  CAS  Google Scholar 

  15. Tchouate Gainkam LO et al (2011) Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. Contrast Media Mol Imaging 6:85–92

    Article  CAS  Google Scholar 

  16. Vaneycken I et al (2011) Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J 25:2433–2446

    Article  PubMed  CAS  Google Scholar 

  17. Vaneycken I et al (2011) Immuno-imaging using nanobodies. Curr Opin Biotechnol 22:877–881

    Article  PubMed  Google Scholar 

  18. Tchouate Gainkam LO et al (2011) Correlation between epidermal growth factor receptor-specific nanobody uptake and tumor burden: a tool for noninvasive monitoring of tumor response to therapy. Mol Imaging Biol 13:940–948

    Article  Google Scholar 

  19. Vaneycken I et al (2010) In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/micro-CT. J Nucl Med 51:1099–1106

    Article  PubMed  CAS  Google Scholar 

  20. De Groeve K et al (2010) Nanobodies as tools for in vivo imaging of specific immune cell types. J Nucl Med 51:782–789

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky Caveliers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xavier, C. et al. (2012). Site-Specific Labeling of His-Tagged Nanobodies with 99mTc: A Practical Guide. In: Saerens, D., Muyldermans, S. (eds) Single Domain Antibodies. Methods in Molecular Biology, vol 911. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-968-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-968-6_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-967-9

  • Online ISBN: 978-1-61779-968-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics