Skip to main content

Radioligand Binding Assays and Their Analysis

  • Protocol
  • First Online:
Receptor Binding Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 897))

Abstract

Radioligand binding is widely used to characterize receptors and determine their anatomical distribution, particularly the superfamily of seven transmembrane-spanning G protein-coupled receptors for both established transmitters such as endothelin-1 and an increasing number of orphan receptors recently paired with their cognate ligands. Three types of assay are described. In saturation experiments, tissue sections, cultured cells, or homogenates are incubated with an increasing concentration of a radiolabeled ligand, which can be a labeled analog of a naturally occurring transmitter, hormone, or synthetic drug. Analysis using iterative nonlinear curve-fitting programs, such as KELL, measures the affinity of the labeled ligand for a receptor (equilibrium dissociation constant, K D ), receptor density (B max), and Hill slope (nH). The affinity and selectivity of an unlabeled ligand to compete for the binding of a fixed concentration of a radiolabeled ligand to a receptor are determined using a competition binding assay. Kinetic assays measure the rate of association to or dissociation from a receptor from which a kinetic K D may be derived. Quantitative autoradiography and image analysis is a sensitive technique to detect low levels of radiolabeled ligands and determine the anatomical distribution of receptors in sections that retain the morphology of the tissue. The measurement of bound radioligand within discrete regions of autoradiographical images using ­computer-assisted image analysis is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Paton WD, Rang HP (1965) The uptake of atropine and related drugs by intestinal smooth muscle of the guinea-pig in relation to acetylcholine receptors. Proc R Soc Lond B 163: 1–44

    Article  PubMed  CAS  Google Scholar 

  2. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ (2005) International union of pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57:279–288

    Article  PubMed  CAS  Google Scholar 

  3. Ozawa A, Lindberg I, Roth B, Kroeze WK (2010) Deorphanization of novel peptides and their receptors. AAPS J 12:378–384

    Article  PubMed  CAS  Google Scholar 

  4. Wise A, Jupe SC, Rees S (2004) The identification of ligands at orphan G-protein coupled receptors. Annu Rev Pharmacol Toxicol 44: 43–66

    Article  PubMed  CAS  Google Scholar 

  5. Katugampola S, Davenport AP (2003) Emerging roles for orphan G protein-coupled receptors in the cardiovascular system. Trends Pharmacol Sci 24:30–35

    Article  PubMed  CAS  Google Scholar 

  6. Davenport AP (2003) Peptide and trace amine orphan receptors: prospects for new therapeutic targets. Curr Opin Pharmacol 3:127–134

    Article  PubMed  CAS  Google Scholar 

  7. Davenport AP, Macphee CH (2003) Translating the human genome: renaissance of cardiovascular receptor pharmacology. Curr Opin Pharmacol 3:111–113

    Article  PubMed  CAS  Google Scholar 

  8. Harmar AJ, Hills RA, Rosser EM, Jones M, Buneman OP, Dunbar DR, Greenhill SD, Hale VA, Sharman JL, Bonner TI, Catterall WA, Davenport AP, Delagrange P, Dollery CT, Foord SM, Gutman GA, Laudet V, Neubig RR, Ohlstein EH, Olsen RW, Peters J, Pin JP, Ruffolo RR, Searls DB, Wright MW, Spedding M (2009) IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Res 37:D680–D685

    Article  PubMed  CAS  Google Scholar 

  9. Thathiah A, Spittaels K, Hoffmann M, Staes M, Cohen A, Horre K, Vanbrabant M, Coun F, Baekelandt V, Delacourte A, Fischer DF, Pollet D, De Strooper B, Merchiers P (2009) The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science 323:946–951

    Article  PubMed  CAS  Google Scholar 

  10. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10:47–60

    Article  PubMed  CAS  Google Scholar 

  11. Jones K, Maguire J, Davenport A (2011) Chemokine receptor CCR5: from AIDS to atherosclerosis. Br J Pharmacol 162:1453–1469

    Article  PubMed  CAS  Google Scholar 

  12. Monastyrskaia K, Lundstrom K, Plahl D, Acuna G, Schweitzer C, Malherbe P, Mutel V (1999) Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction. Br J Pharmacol 128:1027–1034

    Article  PubMed  CAS  Google Scholar 

  13. Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB (2010) Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16:1299–1304

    Article  PubMed  CAS  Google Scholar 

  14. Birdsall NJ (2010) Class A GPCR heterodimers: evidence from binding studies. Trends Pharmacol Sci 31:499–508

    Article  PubMed  CAS  Google Scholar 

  15. El-Asmar L, Springael JY, Ballet S, Andrieu EU, Vassart G, Parmentier M (2005) Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67:460–469

    Article  PubMed  CAS  Google Scholar 

  16. Dong M, Gao F, Pinon DI, Miller LJ (2008) Insights into the structural basis of endogenous agonist activation of family B G protein-coupled receptors. Mol Endocrinol 22:1489–1499

    Article  PubMed  CAS  Google Scholar 

  17. Urwyler S (2011) Allosteric modulation of family C G protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 63:59–126

    Article  PubMed  CAS  Google Scholar 

  18. Schulte G (2010) International union of basic and clinical pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 62:632–667

    Article  PubMed  CAS  Google Scholar 

  19. Davenport AP, O’Reilly G, Molenaar P, Maguire JJ, Kuc RE, Sharkey A et al (1993) Human endothelin receptors characterised using reverse transcriptase-polymerase chain reaction, in situ hybridization and sub-type selective ligands BQ123 and BQ3020: evidence for expression of ETB receptors in human vascular smooth muscle. J Cardiovasc Pharmacol 22(S8):22–25

    Article  Google Scholar 

  20. Molenaar P, O’Reilly G, Sharkey A, Kuc RE, Harding DP, Plumpton P et al (1993) Characterization and localization of endothelin receptor sub-types in the human atrio-ventricular conducting system and myocardium. Circ Res 72:526–538

    Article  PubMed  CAS  Google Scholar 

  21. Davenport AP, O’Reilly G, Kuc RE (1995) Endothelin ETA and ETB mRNA and receptors expressed by smooth muscle in the human vasculature: majority of the ETA sub-type. Br J Pharmacol 114:1110–1116

    Article  PubMed  CAS  Google Scholar 

  22. Katugampola SD, Pallikaros Z, Davenport AP (2001) [125I-His9]-ghrelin, a novel radioligand for localizing ghs orphan receptors in human and rat tissue: up-regulation of receptors with atherosclerosis. Br J Pharmacol 134: 143–149

    Article  PubMed  CAS  Google Scholar 

  23. Davenport AP (2002) International union of pharmacology. XXIX. Update on endothelin receptor nomenclature. Pharmacol Rev 54: 219–226

    Article  PubMed  CAS  Google Scholar 

  24. Davenport AP, Maguire JJ (2006) Endothelin. Handb Exp Pharmacol 176:295–329

    Article  PubMed  Google Scholar 

  25. Vachiery JL, Davenport A (2009) The endothelin system in pulmonary and renal vasculopathy: les liaisons dangereuses. Eur Respir Rev 18:260–271

    Article  PubMed  Google Scholar 

  26. Davenport AP, Kuc RE, Fitzgerald F, Maguire JJ, Berryman K, Doherty AM (1994) [125I]-PD15242, a selective radioligand for human ETA receptors. Br J Pharmacol 111:4–6

    Article  PubMed  CAS  Google Scholar 

  27. Davenport AP, Kuc RE, Hoskins SL, Karet FE, Fitzgerald F (1994) [125I]-PD151242: a selective ligand for endothelin ETA receptors in human kidney which localises to renal vasculature. Br J Pharmacol 113:1303–1310

    Article  PubMed  CAS  Google Scholar 

  28. Peter MG, Davenport AP (1995) Selectivity of [125I]-PD151242 for the human, rat and porcine endothelin ETA receptors in the heart. Br J Pharmacol 114:297–302

    Article  PubMed  CAS  Google Scholar 

  29. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161:1219–1237

    Article  PubMed  CAS  Google Scholar 

  30. Hulme E (1992) Receptor–ligand interactions. IRL, Oxford, UK

    Google Scholar 

  31. de Jong LA, Uges DR, Franke JP, Bischoff R (2005) Receptor–ligand binding assays: technologies and applications. J Chromatogr B 829:1–25

    Article  Google Scholar 

  32. Carter CM, Leighton-Davies JR, Charlton SJ (2007) Miniaturized receptor binding assays: complications arising from ligand depletion. J Biomol Screen 12:255–266

    Article  PubMed  CAS  Google Scholar 

  33. Vauquelin G, Charlton SJ (2010) Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br J Pharmacol 161:488–508

    Article  PubMed  CAS  Google Scholar 

  34. Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25: 186–192

    Article  PubMed  CAS  Google Scholar 

  35. Kenakin T (1993) Pharmacologic analysis of drug–receptor interactions. Raven, New York, NY

    Google Scholar 

  36. Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304

    Article  PubMed  CAS  Google Scholar 

  37. Neubig RR, Spedding M, Kenakin T, Christopoulos A (2003) International Union of Pharmacology Committee on receptor nomenclature and drug classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol Rev 11(55): 597–606

    Article  Google Scholar 

  38. Pitkin SL, Maguire JJ, Kuc RE, Davenport AP (2010) Modulation of the apelin/APJ system in heart failure and atherosclerosis in man. Br J Pharmacol 160:1785–1795

    Article  PubMed  CAS  Google Scholar 

  39. Molenaar P, Kuc RE, Davenport AP (1992) Characterization of two new ETB selective radioligands, [125I]-BQ3020 and [125I]-[Ala1,3,11,15]ET-1 in human heart. Br J Pharmacol 107:637–639

    Article  PubMed  CAS  Google Scholar 

  40. Katugampola SD, Maguire JJ, Matthewson SR, Davenport AP (2001) [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol 132:1255–1260

    Article  PubMed  CAS  Google Scholar 

  41. Wiley KE, Davenport AP (2004) CRF2 receptors are highly expressed in the human cardiovascular system and their cognate ligands urocortins 2 and 3 are potent vasodilators. Br J Pharmacol 143:508–514

    Article  PubMed  CAS  Google Scholar 

  42. Kleinz MJ, Maguire JJ, Skepper JN, Davenport AP (2006) Functional and immunocytochemical evidence for a role of ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man. Cardiovasc Res 69:227–235

    Article  PubMed  CAS  Google Scholar 

  43. Kirby HR, Maguire JJ, Colledge WH, Davenport AP (2010) International union of basic and clinical pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution and function. Pharmacol Rev 62:565–578

    Article  PubMed  CAS  Google Scholar 

  44. Mead EJ, Maguire JJ, Kuc RE, Davenport AP (2007) Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system. Br J Pharmacol 151:1143–1153

    Article  PubMed  CAS  Google Scholar 

  45. Mead EJ, Maguire JJ, Kuc RE, Davenport AP (2007) Kisspeptins are novel potent vasoconstrictors in humans, with a discrete localization of their receptor, G protein-coupled receptor 54, to atherosclerosis-prone vessels. Endocrinology 148:140–147

    Article  PubMed  CAS  Google Scholar 

  46. Singh G, Davenport AP (2006) Neuropeptide B and W: neurotransmitters in an emerging G protein-coupled receptor system. Br J Pharmacol 148:1033–1041

    Article  PubMed  CAS  Google Scholar 

  47. Singh G, Maguire JJ, Kuc RE, Fidock M, Davenport AP (2004) Identification and cellular localisation of NPW1 (GPR7) receptors for the novel neuropeptide W-23 by [125I]-NPW radioligand binding and immunocytochemistry. Brain Res 1017:222–226

    Article  PubMed  CAS  Google Scholar 

  48. Mitchell JD, Maguire JJ, Davenport AP (2009) Emerging pharmacology and physiology of neuromedin U and the structurally related peptide neuromedin S. Br J Pharmacol 158:87–103

    Article  PubMed  CAS  Google Scholar 

  49. Mitchell JD, Maguire JJ, Kuc RE, Davenport AP (2009) Expression and vasoconstrictor function of anorexigenic peptides neuromedin U-25 and S in the human cardiovascular system. Cardiovasc Res 81:353–361

    Article  PubMed  CAS  Google Scholar 

  50. Maguire JJ, Kuc RE, Davenport AP (2000) Orphan-receptor ligand human urotensin ii: receptor localization in human tissues and comparison of vasoconstrictor responses with endothelin-1. Br J Pharmacol 131:441–446

    Article  PubMed  CAS  Google Scholar 

  51. Maguire JJ, Kuc RE, Kleinz MJ, Davenport AP (2008) Immunocytochemical localization of the urotensin-II receptor, UT, to rat and human tissues: relevance to function. Peptides 29:735–742

    Article  PubMed  CAS  Google Scholar 

  52. Maguire JJ, Parker WA, Foord SM, Bonner TI, Neubig RR, Davenport AP (2009) Inter­national union of pharmacology. LXXII. Recommendations for trace amine receptor nomenclature. Pharmacol Rev 61:1–8

    Article  PubMed  CAS  Google Scholar 

  53. Kutzler MA, Molnar J, Schlafer DH, Kuc RE, Davenport AP, Nathanielsz PW (2003) Maternal dexamethasone increases endothelin-1 sensitivity and endothelin a receptor expression in ovine foetal placental arteries. Placenta 24:392–402

    Article  PubMed  CAS  Google Scholar 

  54. Telemaque-Potts S, Kuc RE, Yanagisawa M, Davenport AP (2000) Tissue-specific modulation of endothelin receptors in a rat model of hypertension. J Cardiovasc Pharmacol 36(S1): 122–123

    Google Scholar 

  55. Telemaque-Potts S, Kuc RE, Maguire JJ, Ohlstein E, Yanagisawa M, Davenport AP (2002) Elevated systemic levels of endothelin-1 and blood pressure correlate with blunted constrictor responses and downregulation of endothelin A, but not endothelin B, receptors in an animal model of hypertension. Clin Sci (Lond) 103(Suppl 48):357S–362S

    CAS  Google Scholar 

  56. Davenport AP, Kuc RE (2004) Down-regulation of ETA receptors in ETB receptor-deficient mice. J Cardiovasc Pharmacol 44(Suppl 1): S276–S278

    Article  PubMed  CAS  Google Scholar 

  57. Kuc RE, Davenport AP (2000) Endothelin-A-receptors in human aorta and pulmonary arteries are down regulated in patients with cardiovascular disease: an adaptive response to increased levels of ET-1? J Cardiovasc Pharmacol 36(S1):377–379

    Google Scholar 

  58. Kelland NF, Kuc RE, McLean DL, Azfer A, Bagnall AJ, Gray GA, Gulliver-Sloan FH, Maguire JJ, Davenport AP, Kotelevtsev YV, Webb DJ (2010) Endothelial cell-specific ETB receptor knockout: autoradiographic and histological characterisation and crucial role in the clearance of endothelin-1. Can J Physiol Pharmacol 88:644–651

    Article  PubMed  CAS  Google Scholar 

  59. Bagnall AJ, Kelland NF, Gulliver-Sloan F, Davenport AP, Gray GA, Yanagisawa M, Webb DJ, Kotelevtsev YV (2006) Deletion of endothelial cell endothelin B receptors does not affect blood pressure or sensitivity to salt. Hypertension 48:286–293

    Article  PubMed  CAS  Google Scholar 

  60. Munson PJ, Rodbard D (1980) Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239

    Article  PubMed  CAS  Google Scholar 

  61. McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods 14:213–228

    Article  PubMed  CAS  Google Scholar 

  62. Davenport AP, Hall MD (1988) Comparison between brain paste and polymer standards for quantitative receptor autoradiography. J Neurosci Methods 25:75–82

    Article  PubMed  CAS  Google Scholar 

  63. Pitkin SL, Maguire JJ, Bonner TI, Davenport AP (2010) International union of basic and clinical pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology and function. Pharmacol Rev 62:331–342

    Article  PubMed  CAS  Google Scholar 

  64. Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54:598–604

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the British Heart Foundation for support, grant numbers PG/09/050/27734 and RG/10/077/28300. Supported in part by the NIHR Cambridge Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet J. Maguire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Maguire, J.J., Kuc, R.E., Davenport, A.P. (2012). Radioligand Binding Assays and Their Analysis. In: Davenport, A. (eds) Receptor Binding Techniques. Methods in Molecular Biology, vol 897. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-909-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-909-9_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-908-2

  • Online ISBN: 978-1-61779-909-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics