Skip to main content

Nutrigenomics: Implications for Breast and Colon Cancer Prevention

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 863))

Abstract

Nutrigenomics refers to the interaction between one’s diet and his/her genes. These interactions can markedly influence digestion, absorption, and the elimination of bioactive food components, as well as influence their site of actions/molecular targets. Nutrigenomics comprises nutrigenetics, epigenetics, and transcriptomics, coupled with other “omic,” such as proteomics and metabolomics, that apparently account for the wide variability in cancer risk among individuals with similar dietary habits. Multiple food components including essential nutrients, phytochemical, zoochemicals, fungochemical, and bacterochemicals have been implicated in cancer risk and tumor behavior, admittedly with mixed results. Such findings suggest that not all individuals respond identically to a diet. This chapter highlights the influence of single-nucleotide polymorphism, copy number, epigenetic events, and transcriptomic homeostasis as factors influencing the response to food components and ultimately health, including cancer risk. Both breast and colorectal cancers are reviewed as examples about how nutrigenomics may influence the response to dietary intakes. As the concept that “one size fits all” comes to an end and personalized approaches surface, additional research data will be required to identify those who will benefit most from dietary change and any who might be placed at risk because of an adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Büchner, F.L., Bueno-de-Mesquita, H.B., Ros, M.M. et al. (2009) Consumption of vegetables and fruit and the risk of bladder cancer in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 125, 2643–2651.

    Article  PubMed  Google Scholar 

  2. Migianno, G.A. and De Sanctis, R. (2006) Nutritional Genomics :toward a personalized diet. Clin Ter 157, 355–361.

    Google Scholar 

  3. Milner, J.A. (2004) Molecular targets for bioactive food components. J Nutr 134, 2492S–2498S.

    CAS  PubMed  Google Scholar 

  4. Tan, A.C., Konczak, I, Sze, D.M., et al. (2011) Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer 63, 495–505.

    Article  CAS  PubMed  Google Scholar 

  5. Newman, D.J. and Cragg, G.M. (2009) Microbial antitumor drugs: natural products of microbial origin as anticancer agents. Curr Opin Investig Drugs 10, 1280–1296.

    CAS  PubMed  Google Scholar 

  6. Fenech, M., El-Sohemy, A., Cahill, L., et al. (2011) Nutrigenetics and Nutrigenomics: Viewpoints on the Current Status and Applications in Nutrition Research and Practice. J Nutrigenet Nutrigenomics 28, 69–89.

    Article  Google Scholar 

  7. Ross, S.A. (2010) Evidence for the relationship between diet and cancer. Exp Oncol 32, 137–142.

    CAS  PubMed  Google Scholar 

  8. Trujillo, E., Davis, C., and Milner, J. (2010) Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J Am Diet Assoc 106, 403–443.

    Article  Google Scholar 

  9. Simopoulos, A.P. (2010) Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp Biol Med 235,785–795.

    Article  CAS  Google Scholar 

  10. Inoue, M., Robien, K., Wang, R., et al. (2008) Green tea intake, MTHFR/TYMS genotype and breast cancer risk: the Singapore Chinese Health Study. Carcinogenesis 1967–1972.

    Google Scholar 

  11. World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. 2007. American Institute for Cancer Research, Washington, DC. Retrieved February 20, 2009, from: http://www.dietandcancerreport.org.

  12. Milner, J.A., Romagnolo, D.F., et al. (2010) Bioactive compounds and Cancer 45–46, 393, 469–496, 580.

    Google Scholar 

  13. Martin, K.R. (2007) Using nutrigenomics to evaluate apoptosis as a preemptive target in cancer prevention. Curr Cancer Drug Targets 7, 438–446.

    Article  CAS  PubMed  Google Scholar 

  14. Davis, C.D., Emenaker, N.J., and Milner, J.A. (2010) Cellular proliferation, apoptosis and angiogenesis: molecular targets for nutritional preemption of cancer. Semin Oncol 37, 243–257.

    Article  PubMed  Google Scholar 

  15. Teng, X. and Xiao, H. (2009) Perspectives of DNA microarray and next-generation DNA sequencing technologies. Sci China C Life Sci 52, 7–16.

    Article  CAS  PubMed  Google Scholar 

  16. Masotti, A., Da Sacco, L, Bottazzo, G.F., et al. (2010) Microarray technology: a promising tool in nutrigenomics. Crit Rev Food Sci Nutr 50, 693–698.

    Article  CAS  PubMed  Google Scholar 

  17. Wheatley, K.E., Nogueira, L.M., Perkins, S.N., et. al (2011) Differential effects of calorie restriction and exercise on the adipose transcriptome in diet-induced obese mice. J Obes 2011, 265417.

    Google Scholar 

  18. Satih, S., Chalabi, N., Rabiau, N., et al. (2010) Gene expression profiling of breast cancer cell lines in response to soy isoflavones using a pangenomic microarray approach. OMICS 14, 231–238.

    Article  CAS  PubMed  Google Scholar 

  19. Thomas, P. and Fenech, M. (2011) Cytokinesis-block micronucleus cytome assay in lymphocytes. Methods Mol Biol 682, 217–234.

    Article  CAS  PubMed  Google Scholar 

  20. Bull, C.F., Beetstra-Hill, S., Benassi-Evans, B.J., et al. (2011) Application and adaptation of the in vitro micronucleus assay for the assessment of nutritional requirements of cells for DNA damage prevention. Mutagenesis 26, 193–197.

    Article  CAS  PubMed  Google Scholar 

  21. Davis, C.D. (2007) Nutrigenomics and the prevention of colon cancer. Pharmacogenomics 8, 121–124.

    Article  CAS  PubMed  Google Scholar 

  22. Jacob, R.A., Gretz, D.M., Taylor, P.C., et al. (1995) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. Cancer Res 55, 1894–901.

    Google Scholar 

  23. Pogribny, I.P., Basnakian., A.G., Miller, B.J, et al. (1995) Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res 55, 1894–1901.

    Google Scholar 

  24. Wallwork, J.C. and Duerre, J.A. (1985) Effect of zinc deficiency on methionine metabolism, methylation reaction and protein synthesis in isolated perfused rat liver. J.Nutr 115, 252–262.

    CAS  PubMed  Google Scholar 

  25. Davis, C.D., Uthus, E.O., and Finley, J.W. (2000) Dietary selenium and arsenic affect DNA methylation in vitro in Caco −2 cells and in vivo in rat liver and colon. J Nutr 130, 2903–2909.

    CAS  PubMed  Google Scholar 

  26. Wolff,G.L., Kodell, R.L., Moore, S.R., et al. (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12, 949–957.

    CAS  PubMed  Google Scholar 

  27. Cooney, C.A., Dave, A.A., and Wolff, G.L. (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132, 2393 S–2400 S.

    CAS  PubMed  Google Scholar 

  28. Fraga, M.F., Ballestar, E., and Villar-Garea, A. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37, 391–400.

    Article  CAS  PubMed  Google Scholar 

  29. Ho, E, Clarke, J.D., and Dashwood, R.H. (2009) Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139, 2393–2396.

    Article  CAS  PubMed  Google Scholar 

  30. Nian, H., Delage, B., Ho, E., et al. (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50, 213–221.

    Article  CAS  PubMed  Google Scholar 

  31. American Cancer Society. Cancer Facts and Figures 2010. (2010). Atlanta, Georgia, American Cancer Society.

    Google Scholar 

  32. http://www.cancer.gov/clinicaltrials/results/summary/2010/prophylactic-surgery0910

  33. Ghadirian, P., Narod, S., and Fafard, E. (2009) Breast cancer risk in relation to the joint effect of BRCA mutations and diet diversity. Breast Cancer Res Treat 117, 417–422.

    Article  CAS  PubMed  Google Scholar 

  34. Vissac-Sabatier, C., Bignon, Y.J., and Bernard–Gallon, D.J. (2003) Effects on the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines. Nutr Cancer 45, 247–255.

    Google Scholar 

  35. Vissac-Sabatier, C., Coxam, V., Dechelotte, P., et al. (2003) Phytoestrogen-rich diets modulate expression of BRCA-1 and BRCA-2 tumor suppressor genes in mammary gland in female Wistar rats. Cancer Res 63, 6607–6612.

    CAS  PubMed  Google Scholar 

  36. Cabanes, A., Wang, M., Olivo, S., et al. (2004) Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis 25, 741–748.

    Article  CAS  PubMed  Google Scholar 

  37. Fink, B.N., Gaudet, M.M., Britton, J.A., et al. (2006) Fruits, vegetables, and micronutrient intake in relation to breast cancer survival. Breast Cancer Res Treat 98, 199–208.

    Article  CAS  PubMed  Google Scholar 

  38. Chlebowski, R.T., Blackburn, G.L., Thomson, C.A., et al. (2006) Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women’s Intervention Nutrition Study. J Natl Cancer Inst 98, 1767–1776.

    Article  PubMed  Google Scholar 

  39. Terry, P., Suzuki, R., and Hu, F.B. (2001) A prospective study of major dietary patterns and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 10, 1281–1285.

    CAS  PubMed  Google Scholar 

  40. Bissonauth,V., Shatenstein, B., and Ghadirian, P. (2008) Nutrition and breast cancer among sporadic cases and gene mutation carriers: An overview. Cancer Detect Prev 32, 52–64.

    Article  PubMed  Google Scholar 

  41. Pierce, J.P., Natarajan, L., and Caan, B.J. (2007) Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women’s Healthy Eating and Living (WHEL) randomized trial. JAMA 298, 289–298.

    Article  CAS  PubMed  Google Scholar 

  42. Egeberg, R., Olsen, A., Autrup, H., et al. (2008) Meat consumption, N-acetyl transferase 1 and 2 polymorphism and risk of breast cancer in Danish postmenopausal women. Eur J Cancer Prev 17, 39–47.

    Article  CAS  PubMed  Google Scholar 

  43. Ericson, U., Sonestedt, E., and Ivarsson, M.I., (2009) Folate intake, methylenetetrahydrofolate reductase polymorphisms, and breast cancer risk in women from the Malmö Diet and Cancer cohort. Cancer Epidemiology Biomarkers Prev 18, 1101–1110.

    Article  CAS  Google Scholar 

  44. Maruti, S.S., Ulrich, C.M., Jupe, E.R., et al. (2009) MTHFR C677T and postmenopausal breast cancer risk by intakes of one-carbon metabolism nutrients: a nested case–control study. Breast 11, R91

    Google Scholar 

  45. Sohn, K.J., Jang, H., Campan, M., et al. (2009) The methylenetetrahydrofolate reductase C677T mutation induces cell-specific changes in genomic DNA methylation and uracil misincorporation: a possible molecular basis for the site-specific cancer risk modification. Int J Cancer 124, 1999–2005.

    Article  CAS  PubMed  Google Scholar 

  46. Li,Y., Yuan, Y.Y., Meeran, S.M., et al. (2010) Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol Cancer. 14, 274.

    Article  Google Scholar 

  47. Berletch JB, Liu C, Love WK, et al. (2008) Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 103, 509–519.

    Article  CAS  PubMed  Google Scholar 

  48. Wu, A.H., Yu, M.C., and Tseng, C.C. (2003) Green tea and risk of breast cancer in Asian Americans. Int J Cancer 106, 574–579.

    Article  CAS  PubMed  Google Scholar 

  49. Wu, A.H., Tseng, C.C., Van Den Berg, D., et al. (2003) Tea intake, COMT genotype, and breast cancer in Asian-American women. Cancer 63, 7526–7529.

    CAS  Google Scholar 

  50. Lee, S.A., Fowke, J.H., Lu, W., et al. (2008) Cruciferous vegetables, the GSTP1 Ile105Val genetic polymorphism, and breast cancer risk. Am J Clin Nutr 87,753–760.

    CAS  PubMed  Google Scholar 

  51. Antosiewicz, J., Ziolkowski,W., Kar,S., et al. (2008) Role of reactive oxygen intermediates in cellular responses to dietary cancer chemopreventive agents. Planta Med 74, 1570–1579.

    Article  CAS  PubMed  Google Scholar 

  52. Hail, N. Jr., Cortes, M., Drake, E.N., et al. (2008) Cancer chemoprevention: a radical perspective. Free Radic Biol Med 45, 97–110.

    Article  CAS  PubMed  Google Scholar 

  53. Syed Alwi, S.S., Cavell, B.E., Telang, U., et al. (2010) In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study.Br J Nutr 104, 1288–1296.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, J., John, E., Ingles, S.E., (2008) 5-Lipoxygenase and 5-Lipoxygenase-Activating Protein Gene Polymorphisms, Dietary Linoleic Acid, and Risk for Breast Cancer. Cancer Epidemiology Biomarkers Prev. 17, 2748–2754.

    Article  CAS  Google Scholar 

  55. Dimri M., Bommi P.V., Sahasrabuddhe A.A., et al. (2010) Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells. Carcinogenesis 31, 489–495.

    Article  CAS  PubMed  Google Scholar 

  56. Li, Y., Ambrosone, C.B. and McCullough, M.J. (2009) Oxidative stress-related genotypes, fruit and vegetable consumption and breast cancer risk. Carcinogenesis 777–784.

    Google Scholar 

  57. Iwasaki, M., Hamada, G.S., Nishimoto, I.N., et al. (2010) Dietary isoflavone intake, polymorphisms in the CYP17, CYP19, 17beta-HSD1, and SHBG genes, and risk of breast cancer in case–control studies in Japanese, Japanese Brazilians, and non-Japanese Brazilians. Nutr Cancer 62,466–475.

    Article  CAS  PubMed  Google Scholar 

  58. Qin, W., Zhu,W., Shi, H., et al. (2009) Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer 61, 238–244.

    Article  CAS  PubMed  Google Scholar 

  59. Jawaid, K., Crane, S.R., Nowers, J.L., et al. (2010) Long-term genistein treatment of MCF-7 cells decreases acetylated histone 3 expression and alters growth responses to mitogens and histone deacetylase inhibitors. J Steroid Biochem Mol Biol 120, 164–171.

    Article  CAS  PubMed  Google Scholar 

  60. Aiyer, H.S. and Gupta, R.C. (2010) Berries and ellagic acid prevent estrogen-induced mammary tumorigenesis by modulating enzymes of estrogen metabolism. Cancer Prev Res (Phila) 3, 727–737.

    Article  CAS  Google Scholar 

  61. Lauber, S.N. and Gooderham, N.J. (2010) The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine promotes invasive behaviour of breast cancer cells. Toxicology 279, 139–145.

    Article  PubMed  Google Scholar 

  62. Taioli, E., Garza, M.A., Ahn, Y.O., et al. (2009) Meta- and pooled analyses of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and colorectal cancer: a HuGE-GSEC review. Am J Epidemiol 170, 1207–1221.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, J.J. and Ward, R.L. (2010) Folate and one-carbon metabolism and its impact on aberrant DNA methylation in cancer. Adv Genet 71, 79–121.

    Article  CAS  PubMed  Google Scholar 

  64. Cravo, M.L., Pinto, A.G., Chaves, P., et al. (1998) Effect of folate supplementation on DNA methylation of rectal mucosa in patients with colonic adenomas: correlation with nutrient intake. Clin Nutr 17, 45–49.

    Article  CAS  PubMed  Google Scholar 

  65. Figueiredo, J.C., Grau, M.V, Wallace, K., et al. (2009) Global DNA hypomethylation (LINE-1) in the normal colon and lifestyle characteristics and dietary and genetic factors. Cancer Epidemiol Biomarkers Prev 18, 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  66. Economopoulos, K.P. and Sergentanis, T.N. (2010) GSTM1, GSTT1, GSTP1, GSTA1 and colorectal cancer risk: a comprehensive meta-analysis. Eur J Cancer 46, 1617–1631.

    Article  CAS  PubMed  Google Scholar 

  67. Ross, S.A. (2007) Nutritional genomic approaches to cancer prevention research. Exp Oncol 29, 250–256.

    CAS  PubMed  Google Scholar 

  68. Novakovic, B., Sibson, M., Ng, H.K., et al. (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 284, 14838–14848.

    Article  CAS  PubMed  Google Scholar 

  69. Dai, Q., Shrubsole, M.J., Ness, R.M., et al. (2007) The relation of magnesium and calcium intakes and a genetic polymorphism in the magnesium transporter to colorectal neoplasia risk. Am J Clin Nutr 86, 743–751.

    CAS  PubMed  Google Scholar 

  70. Brevik, A., Joshi, A.D., Corral, R., et al. (2010) Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat. Cancer Epidemiol Biomarkers Prev 19, 3167–3173.

    Article  CAS  PubMed  Google Scholar 

  71. Wong, H.L., Peters, U., Hayes, R.B., et al. (2010) Polymorphisms in the adenomatous polyposis coli (APC) gene and advanced colorectal adenoma risk. Eur J Cancer 46, 2457–2466.

    Article  CAS  PubMed  Google Scholar 

  72. Biswas, S.K., McClure, D., Jimenez, L.A., et al. (2005) Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal 7, 32–41.

    Article  CAS  PubMed  Google Scholar 

  73. Li, L., Aggarwal, B.B., Shishodia, S., et al. (2004) Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis.Cancer 101, 2351–2362.

    Article  CAS  PubMed  Google Scholar 

  74. Mudduluru, G., George-William, J.N., Muppala, S., et al. (2011) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31,185–197.

    Article  CAS  PubMed  Google Scholar 

  75. Reuter, S., Gupta, S.C., Park, B., et al. (2011) Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr 6, 93–108.

    Article  CAS  PubMed  Google Scholar 

  76. Ströhle, A., Maike, W., and Hahn, A. (2007) Nutrition and colorectal cancer. Med Monatsschr Pharm 30, 25-32.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Riscuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Riscuta, G., Dumitrescu, R.G. (2012). Nutrigenomics: Implications for Breast and Colon Cancer Prevention. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 863. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-612-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-612-8_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-611-1

  • Online ISBN: 978-1-61779-612-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics