Skip to main content

Engineering the Caenorhabditis elegans Genome by Mos1-Induced Transgene-Instructed Gene Conversion

  • Protocol
  • First Online:
Mobile Genetic Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 859))

Abstract

Mos1-induced transgene-instructed gene conversion (MosTIC) is a technique of choice to engineer the genome of the nematode Caenorhabditis elegans. MosTIC is initiated by the excision of Mos1, a DNA transposon of the Tc1/Mariner super family that can be mobilized in the germ line of C. elegans. Mos1 excision creates a DNA double-strand break that is repaired by several cellular mechanisms, including transgene-instructed gene conversion. For MosTIC, the transgenic repair template used by the gene conversion machinery is made of sequences that share DNA homologies with the genomic region to engineer and carries the modifications to be introduced in the genome. In this chapter, we present two MosTIC protocols routinely used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berezikov E, Bargmann CI, Plasterk RH (2004) Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic Acids Res 32:e40

    Article  PubMed  Google Scholar 

  2. Plasterk RH, Groenen JT (1992) Targeted alterations of the Caenorhabditis elegans genome by transgene instructed DNA double strand break repair following Tc1 excision. Embo J 11:287–290

    PubMed  CAS  Google Scholar 

  3. Robert VJ, et al. (2008) Gene conversion and end-joining-repair double-strand breaks in the Caenorhabditis elegans germline. Genetics 180:673–679

    Article  PubMed  CAS  Google Scholar 

  4. Barrett PL, Fleming JT, Gobel V (2004) Targeted gene alteration in Caenorhabditis elegans by gene conversion. Nat Genet 36:1231–1237

    Article  PubMed  CAS  Google Scholar 

  5. Robert V, Bessereau JL (2007) Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks. EMBO J 26:170–183

    Article  PubMed  CAS  Google Scholar 

  6. Robert VJ, Katic I, Bessereau JL (2009) Mos1 transposition as a tool to engineer the Caenorhabditis elegans genome by homologous recombination. Methods 49:263–269

    Article  PubMed  CAS  Google Scholar 

  7. Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83:8684–8688

    Article  PubMed  CAS  Google Scholar 

  8. Stiernagle T (2006) Maintenance of C. elegans. In: e. WormBook (ed) Wormbook.

    Google Scholar 

  9. Bessereau JL, et al. (2001) Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413:70–74

    Article  PubMed  CAS  Google Scholar 

  10. Robert VJ, Bessereau JL (2009) Manipulating the Caenorhabditis elegans genome using mariner transposons. Genetica 138:54154–9.

    Google Scholar 

  11. Duverger Y, et al. (2007) A semi-automated high-throughput approach to the generation of transposon insertion mutants in the nematode Caenorhabditis elegans. Nucleic Acids Res 35:e11

    Article  PubMed  Google Scholar 

  12. Granger L, Martin E, Segalat L (2004) Mos as a tool for genome-wide insertional mutagenesis in Caenorhabditis elegans: results of a pilot study. Nucleic Acids Res 32:e117

    Article  PubMed  Google Scholar 

  13. Bazopoulou D, Tavernarakis N (2009) The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans. Genetica 137:39–46

    Article  PubMed  CAS  Google Scholar 

  14. Williams DC, et al. (2005) Characterization of Mos1-Mediated Mutagenesis in Caenorhabditis elegans: A Method for the Rapid Identification of Mutated Genes. Genetics 169:1779–1785

    Article  PubMed  CAS  Google Scholar 

  15. Boulin T, Bessereau JL (2007) Mos1-mediated insertional mutagenesis in Caenorhabditis elegans. Nat Protoc 2:1276–1287

    Article  PubMed  CAS  Google Scholar 

  16. Bessereau JL (2006) Insertional mutagenesis in C. elegans using the Drosophila transposon Mos1: a method for the rapid identification of mutated genes. Methods Mol Biol 351:59–73

    PubMed  CAS  Google Scholar 

  17. Frokjaer-Jensen C, et al. (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40:1375–1383

    Article  PubMed  CAS  Google Scholar 

  18. Hobert O (2002) PCR fusion-based approach to create reporter gene constructs for ­expression analysis in transgenic C. elegans. Biotechniques 32:728–730

    PubMed  CAS  Google Scholar 

  19. Stinchcomb DT, et al. (1985) Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol 5:3484–3496

    PubMed  CAS  Google Scholar 

  20. Evans TC (2006) Transformation and microinjection. In: e. WormBook (ed) Wormbook.

    Google Scholar 

  21. Giordano-Santini R, Dupuy D (2011) Selectable genetic markers for nematode transgenesis. Cell Mol Life Sci 68:1917-1927 [Epub ahead of print].

    Google Scholar 

  22. Martin E, et al. (2002) Identification of 1088 new transposon insertions of Caenorhabditis elegans: a pilot study toward large-scale screens. Genetics 162:521–524

    PubMed  CAS  Google Scholar 

  23. Kelly WG, et al. (1997) Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics 146:227–238

    PubMed  CAS  Google Scholar 

  24. Paabo S, Irwin DM, Wilson AC (1990) DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem 265:4718–4721

    PubMed  CAS  Google Scholar 

  25. Frokjaer-Jensen C, et al. (2010) Targeted gene deletions in C. elegans using transposon excision. Nat Methods 7:451–453

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie J. P. Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Robert, V.J.P. (2012). Engineering the Caenorhabditis elegans Genome by Mos1-Induced Transgene-Instructed Gene Conversion. In: Bigot, Y. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 859. Humana Press. https://doi.org/10.1007/978-1-61779-603-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-603-6_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-602-9

  • Online ISBN: 978-1-61779-603-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics