Skip to main content

Confocal Microscopy in Plant–Pathogen Interactions

  • Protocol
  • First Online:
Plant Fungal Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 835))

Abstract

The development of confocal microscopy and its application to studies of plant–pathogen interactions have revolutionised research into the role of selected molecules and cell components in pathogen infection strategies and plant defence responses. Confocal microscopy allows high-resolution visualisation of a variety of fluorescent and fluorescently tagged molecules in both fixed and living cells, not only in single cells but also in intact tissues. Confocal microscopes greatly improve image quality by reducing interference by out-of-focus light and can capture high-resolution serial optical sections through samples in the z-axis. In combination with a range of computational image analysis techniques, confocal microscopy provides a powerful tool by which molecules, molecular interactions, and cell components can be localised and studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hepler PK, Gunning BES (1998) Confocal fluorescence microscopy of plant cells. Protoplasma 201: 121–157

    Article  Google Scholar 

  2. Mathesius U, Bayliss C, Weinman JJ, Schlaman HRM, Spaink HP, Rolfe BG, McCully ME, Djordjevic MA (1998) Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover. Mol Plant-Microbe Interact 11: 1223–1232

    Article  CAS  Google Scholar 

  3. Gunning BES (2008) Plant Cell Biology on DVD.

    Google Scholar 

  4. Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198: 246–259

    Article  PubMed  CAS  Google Scholar 

  5. Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19: 706–724

    Article  PubMed  CAS  Google Scholar 

  6. Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17: 3436–3450

    Article  PubMed  CAS  Google Scholar 

  7. Koning AJ, Lum PY, Williams JM, Wright R (1993) DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskeleton 25: 111–128

    Article  PubMed  CAS  Google Scholar 

  8. Leckie CP, Callow JA, Green JR (1995) Reorganization of the endoplasmic reticulum in pea leaf epidermal cells infected by the powdery mildew fungus Erysiphe pisi. New Phytol 131: 211–221

    Article  Google Scholar 

  9. Foissner I (2009) Fluorescent phosphocholine-a specific marker for the endoplasmic reticulum and for lipid droplets in Chara internodal cells. Protoplasma 238: 47–58

    Article  PubMed  CAS  Google Scholar 

  10. Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33: 775–792

    Article  PubMed  CAS  Google Scholar 

  11. Takemoto D, Jones DA, Hardham AR (2006) Re-organization of the cytoskeleton and endoplasmic reticulum in the Arabidopsis pen1-1 mutant inoculated with the non-adapted powdery mildew pathogen, Blumeria graminis f. sp. hordei. Mol Plant Pathol 7: 553–563

    Article  PubMed  CAS  Google Scholar 

  12. Truernit E, Haseloff J (2008) A simple way to identify non-viable cells within living plant tissue using confocal microscopy. Plant Methods 4: 15–20

    Article  PubMed  Google Scholar 

  13. Sun JY, Gaudet DA, Lu ZX, Frick M, Puchalski B, Laroche A (2008) Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol Plant-Microbe Interact 21: 346–360

    Article  PubMed  CAS  Google Scholar 

  14. Higaki T, Goh T, Hayashi T, Kutsuna N, Kadota Y, Hasezawa S, Sano T, Kuchitsu K (2007) Elicitor-induced cytoskeletal rearrangement relates to vacuolar dynamics and execution of cell death: In vivo imaging of hypersensitive cell death in tobacco BY-2 cells. Plant Cell Physiol 48: 1414–1425

    Article  PubMed  CAS  Google Scholar 

  15. Ashtamker C, Kiss V, Sagi M, Davydov O, Fluhr R (2007) Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco bright yellow-2 cells. Plant Physiol 143: 1817–1826

    Article  PubMed  CAS  Google Scholar 

  16. Liu P, Luo L, Guo JH, Liu HM, Wang BQ, Deng BX, Long CA, Cheng YJ (2010) Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum. Mycologia 102: 311–318

    Article  PubMed  CAS  Google Scholar 

  17. Koh S, André A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44: 516–529

    Article  PubMed  CAS  Google Scholar 

  18. Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20: 537–542

    Article  PubMed  CAS  Google Scholar 

  19. Wang WM, Wen YQ, Berkey R, Xiao SY (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21: 2898–2913

    Article  PubMed  CAS  Google Scholar 

  20. Doehlemann G, van der Linde K, Aßmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R (2009) Pep1, a secreted effector protein of Ustilago maydis is required for successful invsion of plant cells. PLoS Pathogens 5: e1000290

    Google Scholar 

  21. Godfrey SAC, Mansfield JW, Corry DS, Lovell HC, Jackson RW, Arnold DL (2010) Confocal imaging of Pseudomonas syringae pv. phaseolicola colony development in bean reveals reduced multiplication of strains containing the genomic island PPHGI-1. Mol Plant-Microbe Interact 23: 1294–1302

    Article  PubMed  CAS  Google Scholar 

  22. Czymmek KJ, Fogg M, Powell DH, Sweigard J, Park SY, Kang S (2007) In vivo time-lapse documentation using confocal and multi-photon microscopy reveals the mechanisms of invasion into the Arabidopsis root vascular system by Fusarium oxysporum. Fungal Genetics & Biology 44: 1011–1023

    Article  CAS  Google Scholar 

  23. Baskin TI, Busby CH, Fowke LC, Sammut M, Gubler F (1992) Improvements in immunostaining samples embedded in methacrylate: localization of microtubules and other antigens throughout developing organs in plants of diverse taxa. Planta 187: 405–413

    Article  Google Scholar 

  24. Gubler F (1989) Immunofluorescence localization of microtubules in plant root tips embedded in butyl-methyl methacrylate. Cell Biol Int Rep 13: 137–145

    Article  Google Scholar 

  25. Kobayashi I, Kobayashi Y, Hardham AR (1994) Dynamic reorganization of microtubules and microfilaments in flax cells during the resistance response to flax rust infection. Planta 195: 237–247

    Article  CAS  Google Scholar 

  26. Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N (2004) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J 40: 419–427

    Article  PubMed  CAS  Google Scholar 

  27. Bhat RA, Lahaye T, Panstruga R (2006) The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods. Plant Methods 2: 12

    Article  PubMed  Google Scholar 

  28. Ohad N, Shichrur K, Yalovsky S (2007) The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation. Plant Physiol 145: 1090–1099

    Article  PubMed  CAS  Google Scholar 

  29. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160: 629–633

    Article  PubMed  CAS  Google Scholar 

  30. Hoppe AD, Seveau S, Swanson JA (2009) Live cell fluorescence microscopy to study microbial pathogenesis. Cell Microbiol 11: 540–550

    Article  PubMed  CAS  Google Scholar 

  31. Lalonde S, Ehrhardt DW, Frommer WB (2005) Shining light on signaling and metabolic networks by genetically encoded biosensors. Curr Opin Plant Biol 8: 574–581

    Article  PubMed  CAS  Google Scholar 

  32. Stewart CN (2006) Go with the glow: fluorescent proteins to light trangenic organisms. Curr Opin Plant Biol 24: 155–162

    CAS  Google Scholar 

  33. Shaner N, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotech 22: 1567–1572

    Article  CAS  Google Scholar 

  34. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Röcker C, Salih A, Spindler K-D, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci 101: 15905–15910

    Article  PubMed  CAS  Google Scholar 

  35. Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Innovation: Photoactiva­table fluorescent proteins. Nat Rev Mol Cell Biol 6: 885–891

    Article  PubMed  CAS  Google Scholar 

  36. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nature Methods 6: 153–159

    Article  PubMed  CAS  Google Scholar 

  37. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17: 520–527

    Article  PubMed  CAS  Google Scholar 

  38. Morris AC, Djordjevic MA (2006) The Rhizobium leguminosarum biovar trifolii ANU794 induces novel developmental responses on the subterranean clover cultivar Woogenellup. Mol Plant-Microbe Interact 19: 471–479

    Article  PubMed  CAS  Google Scholar 

  39. Ladiges P, Evans B, Saint R, Knox R (2010) Biology. McGraw-Hill, North Ryde, NSW,

    Google Scholar 

  40. Hardham AR (2007) Cell biology of plant-oomycete interactions. Cell Microbiol 9: 31–39

    Article  PubMed  CAS  Google Scholar 

  41. Rafiqi M, Gan PHP, Ravensdale M, Lawrence GJ, Ellis JG, Jones DA, Hardham AR, Dodds PN (2010) Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen. Plant Cell 22: 2017–2032

    Article  PubMed  CAS  Google Scholar 

  42. Murdoch LJ, Kobayashi I, Hardham AR (1998) Production and characterisation of monoclonal antibodies to cell wall components of the flax rust fungus. Eur J Plant Pathol 104: 331–346

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Australian Research Council grants DP0771374, DP0880206, DP1093850 and LE100100078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne R. Hardham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hardham, A.R. (2012). Confocal Microscopy in Plant–Pathogen Interactions. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics