Skip to main content

Fluorescence Imaging of Osteoclasts Using Confocal Microscopy

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 816))

Abstract

In order to understand osteoclast cell biology, it is necessary to culture these cells on a physiological ­substrate that they can resorb in vitro, such as bone or dentine. However, this creates problems for analysis by fluorescence microscopy, due to the depth of the sample under investigation. By virtue of its optical sectioning capabilities, confocal microscopy is ideal for analysis of such samples, enabling precise intracellular localisation of proteins in resorbing osteoclasts to be determined. Moreover, by taking a series of images in the axial dimension, it is possible to create axial section views and to reconstruct 3D images of the osteoclasts, enabling the spatial organisation of the structures of interest to be more easily discerned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Minsky, M. (1988) Memoir on Inventing the Confocal Scanning Microscope. Scanning 10, 128–138.

    Article  Google Scholar 

  2. White, J. G., and Amos, W. B. (1987) Confocal Microscopy Comes of Age. Nature 328, 183–184.

    Article  Google Scholar 

  3. Taylor, M. L., Boyde, A., and Jones, S. J. (1989) The Effect of Fluoride on the Patterns of Adherence of Osteoclasts Cultured on and Resorbing Dentin - A 3-D Assessment of Vinculin-Labeled Cells Using Confocal Optical Microscopy. Anatomy and Embryology 180, 427–435.

    Article  PubMed  CAS  Google Scholar 

  4. Lakkakorpi, P. T., Helfrich, M. H., Horton, M. A., and Väänänen, H. K. (1993) Spatial-Organization of Microfilaments and Vitronectin Receptor, Alpha-V-Beta-3, in Osteoclasts - A Study Using Confocal Laser Scanning Microscopy. J. Cell Sci. 104, 663–670.

    PubMed  CAS  Google Scholar 

  5. Baron, R., Neff, L., Brown, W., Courtoy, P. J., Louvard, D., and Farquhar, M. G. (1988) Polarized Secretion of Lysosomal-Enzymes – Co-Distribution of Cation-Independent Mannose-6-Phosphate Receptors and Lysosomal-Enzymes Along the Osteoclast Exocytic Pathway. J. Cell Biol. 106, 1863–1872.

    Article  PubMed  CAS  Google Scholar 

  6. Salo, J., Metsikko, K., Palokangas, H., Lehenkari, P., and Väänänen, H. K. (1996) Bone-resorbing osteoclasts reveal a dynamic division of basal plasma membrane into two different domains. J. Cell Sci. 109 , 301–307.

    PubMed  CAS  Google Scholar 

  7. Nesbitt, S. A., and Horton, M. A. (1997) Trafficking of matrix collagens through bone resorbing osteoclasts., Science 276, 266–273.

    Article  PubMed  CAS  Google Scholar 

  8. Palokangas, H., Mulari, M., and Väänänen, H. K. (1997) Endocytic pathway from the basal plasma membrane to the ruffled border membrane in bone-resorbing osteoclasts. J. Cell Sci. 110, 1767–1780.

    PubMed  CAS  Google Scholar 

  9. Stenbeck, G., and Horton, M. A. (2004) Endocytic trafficking in actively resorbing osteoclasts. J. Cell Sci. 117, 827–836.

    Article  PubMed  CAS  Google Scholar 

  10. Coxon, F. P., Thompson, K., Roelofs, A. J., Ebetino, F. H., and Rogers, M. J. (2008) Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone 42, 848–860.

    Article  PubMed  CAS  Google Scholar 

  11. Vääräniemi, J., Halleen, J. M., Kaarlonen, K., Ylipahkala, H., Alatalo, S. L., Andersson, G., Kaija, H., Vihko, P., and Väänänen, H. K. (2004) Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J. Bone Miner. Res. 19, 1432–1440.

    Article  PubMed  Google Scholar 

  12. Xia, L. H., Kilb, J., Wex, H., Li, Z. Q., Lipyansky, A., Breuil, V., Stein, L., Palmer, J. T., Dempster, D. W., and Brömme, D. (1999) Localization of rat cathepsin K in osteoclasts and resorption pits: Inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones. Biol. Chem. 380, 679–687.

    Article  PubMed  CAS  Google Scholar 

  13. Bruzzaniti, A., Neff, L., Sandoval, A., Du, L., Horne, W. C., and Baron, R. (2009) Dynamin reduces Pyk2 Y402 phosphorylation and SRC binding in osteoclasts. Mol. Cell Biol. 29, 3644–3656.

    Article  PubMed  CAS  Google Scholar 

  14. Lakkakorpi, P. T., Nakamura, I., Nagy, R. M., Parsons, J. T., Rodan, G. A., and Duong, L. T. (1999) Stable association of PYK2 and p130(Cas) in osteoclasts and their co-localization in the sealing zone. J. Biol. Chem. 274, 4900–4907.

    Article  PubMed  CAS  Google Scholar 

  15. Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G. H., Wada, Y., and Futai, M. (2003) From lysosomes to the plasma membrane: localization of vacuolar-type H+-ATPase with the a3 isoform during osteoclast differentiation. J. Biol. Chem. 278, 22023–22030.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao, H., Laitala-Leinonen, T., Parikka, V., and Väänänen, H. K. (2001) Downregulation of small gtpase rab7 impairs osteoclast polarization and bone resorption. J. Biol. Chem. 276, 39295–39302.

    Article  PubMed  CAS  Google Scholar 

  17. Van Wesenbeeck, L., Odgren, P. R., Coxon, F. P., Frattini, A., Moens, P., Perdu, B., MacKay, C. A., Van Hul, E., Timmermans, J. P., Vanhoenacker, F., Jacobs, R., Peruzzi, B., Teti, A., Helfrich, M. H., Rogers, M. J., Villa, A., and Van Hul, W. (2007) Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J. Clin. Invest. 117, 919–930.

    Article  PubMed  Google Scholar 

  18. Pavlos, N. J., Xu, J., Riedel, D., Yeoh, J. S., Teitelbaum, S. L., Papadimitriou, J. M., Jahn, R., Ross, F. P., and Zheng, M. H. (2005) Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption, Mol. Cell Biol. 25, 5253–5269.

    Article  PubMed  CAS  Google Scholar 

  19. Saltel, F., Destaing, O., Bard, F., Eichert, D., and Jurdic, P. (2004) Apatite-mediated actin dynamics in resorbing osteoclasts. Mol. Biol. Cell 15, 5231–5241.

    Article  PubMed  CAS  Google Scholar 

  20. Roelofs, A. J., Coxon, F. P., Ebetino, F. H., Lundy, M. W., Henneman, Z. J., Nancollas, G. H., Sun, S., Blazewska, K. M., Lynn, F. B., Kashemirov, B. A., Khalid, A. B., McKenna, C. E., and Rogers, M. J. (2010) Fluorescent Risedronate Analogs Reveal Bisphosphonate Uptake by Bone Marrow Monocytes and Localization Around Osteocytes In Vivo. J. Bone Miner. Res. 25, 606–616

    Article  PubMed  CAS  Google Scholar 

  21. Coxon, F. P., Taylor, A., Van Wesenbeeck, L., and Van Hul,W. (2009) Plekhm1 is involved in trafficking of cathepsin K-containing endosomal vesicles in osteoclasts. Bone 44, S248.

    Article  Google Scholar 

  22. Erwig, L. P., McPhilips, K. A., Wynes, M. W., Ivetic, A., Ridley, A. J., and Henson, P. M. (2006) Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc. Natl. Acad. Sci.USA. 103, 12825–12830.

    Article  PubMed  CAS  Google Scholar 

  23. Thompson, K., Rogers, M. J., Coxon, F. P., and Crockett, J. C. (2006) Cytosolic entry of bisphosphonate drugs requires acidification of vesicles following fluid-phase endocytosis, Mol. Pharmacol. 69, 1624–1632

    Article  PubMed  CAS  Google Scholar 

  24. Livet, J., Weissman, T. A., Kang, H. N., Draft, R. W., Lu, J., Bennis, R. A., Sanes, J. R., and Lichtman, J. W. (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62.

    Article  PubMed  CAS  Google Scholar 

  25. Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G. H. (2003) Photobleaching and photoactivation: following protein dynamics in living cells, Nature Cell Biol . 5, S7–S14.

    Google Scholar 

  26. Destaing, O., Sanjay, A., Itzstein, C., Horne, W. C., Toomre, D., De Camilli, P., and Baron, R. (2008) The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in Osteoclasts. Mol. Biol. Cell 19, 394–404.

    Article  PubMed  CAS  Google Scholar 

  27. Gil-Henn, H., Destaing, O., Sims, N. A., Aoki, K., Alles, N., Neff, L., Saniay, A., Bruzzanitti, A., De Camilli, P., Baron, R., and Schlessinger, J. (2007) Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(−/−) mice. J. Cell Biol.178, 1053–1064.

    Article  PubMed  CAS  Google Scholar 

  28. Kenworthy, A. K. (2001) Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods 24, 289–296.

    Article  PubMed  CAS  Google Scholar 

  29. Patterson, G. H. and Lippincott-Schwartz, J. (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877.

    Article  PubMed  CAS  Google Scholar 

  30. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., and Miyawaki, A. (2002) An optical marker based on the UV-induced green-­to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci USA. 99, 12651–12656.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fraser P. Coxon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Coxon, F.P. (2012). Fluorescence Imaging of Osteoclasts Using Confocal Microscopy. In: Helfrich, M., Ralston, S. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 816. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-415-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-415-5_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-414-8

  • Online ISBN: 978-1-61779-415-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics