Skip to main content

Methods to Study Cancer Therapeutic Drugs That Target Cell Cycle Checkpoints

  • Protocol
  • First Online:
Cell Cycle Checkpoints

Part of the book series: Methods in Molecular Biology ((MIMB,volume 782))

Abstract

Cell cycle checkpoints operating through a network of multiple signaling pathways provide a key mechanism for self-defense of cells against DNA damage caused by various endogenous or environmental stresses. In cancer treatment, checkpoints are activated in response to diverse DNA-damaging agents and radiation, thus representing a critical barrier limiting therapeutic efficacy. To date, despite efforts to target other components of checkpoint signaling pathways (e.g., ATM, Chk2, Wee1), checkpoint kinase 1 (Chk1) remains the most important target for cancer treatment because of its functional association with essentially all cell cycle checkpoints. The primary goal in the development of therapeutic agents targeting cell cycle checkpoints continues to be improving the anti-cancer activity of chemo- and radiotherapy by abrogating checkpoints necessary for DNA repair, thereby killing cancer cells through engagement of the apoptotic machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, B.B., Anderson, H.J. and Roberge, M. (2003) Targeting DNA checkpoint kinases in cancer therapy. Cancer Biol. Ther., 2, S16–S22.

    PubMed  CAS  Google Scholar 

  2. Bartek, J. and Lukas, J. (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol., 19, 238–245.

    Article  PubMed  CAS  Google Scholar 

  3. Gottifredi, V. and Prives, C. (2005) The S phase checkpoint: when the crowd meets at the fork. Semin. Cell Dev. Biol., 16, 355–368.

    Article  PubMed  CAS  Google Scholar 

  4. Jazayeri, A., Falck, J., Lukas, C., Bartek, J., Smith, G.C., Lukas, J. and Jackson, S.P. (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol., 8, 37–45.

    Article  PubMed  CAS  Google Scholar 

  5. Tapia-Alveal, C., Calonge, T.M. and O’Connell, M.J. (2009) Regulation of chk1. Cell Div., 4, 8.

    Article  PubMed  Google Scholar 

  6. Niida, H., Katsuno, Y., Banerjee, B., Hande, M.P. and Nakanishi, M. (2007) Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol. Cell Biol., 27, 2572–2581.

    Article  PubMed  CAS  Google Scholar 

  7. Walker, M., Black, E.J., Oehler, V., Gillespie, D.A. and Scott, M.T. (2009) Chk1 C-terminal regulatory phosphorylation mediates checkpoint activation by de-repression of Chk1 catalytic activity. Oncogene, 28, 2314–2323.

    Article  PubMed  CAS  Google Scholar 

  8. Wilsker, D., Petermann, E., Helleday, T. and Bunz, F. (2008) Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc. Natl. Acad. Sci. USA, 105, 20752–20757.

    Article  PubMed  CAS  Google Scholar 

  9. Choi, J.H., Lindsey-Boltz, L.A. and Sancar, A. (2007) Reconstitution of a human ATR-mediated checkpoint response to damaged DNA. Proc. Natl. Acad. Sci. USA, 104, 13301–13306.

    Article  PubMed  CAS  Google Scholar 

  10. Chou, D.M. and Elledge, S.J. (2006) Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc. Natl. Acad. Sci. USA, 103, 18143–18147.

    Article  PubMed  CAS  Google Scholar 

  11. Yoshizawa-Sugata, N. and Masai, H. (2007) Human Tim/Timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint. J. Biol. Chem., 282, 2729–2740.

    Article  PubMed  CAS  Google Scholar 

  12. Tse, A.N., Carvajal, R. and Schwartz, G.K. (2007) Targeting checkpoint kinase 1 in cancer therapeutics. Clin. Cancer Res., 13, 1955–1960.

    Article  PubMed  CAS  Google Scholar 

  13. Ashwell, S. and Zabludoff, S. (2008) DNA damage detection and repair pathways--recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin. Cancer Res., 14, 4032–4037.

    Article  PubMed  CAS  Google Scholar 

  14. Kastan, M.B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature, 432, 316–323.

    Article  PubMed  CAS  Google Scholar 

  15. Golding, S.E., Rosenberg, E., Valerie, N., Hussaini, I., Frigerio, M., Cockcroft, X.F., Chong, W.Y., Hummersone, M., Rigoreau, L., Menear, K.A. et al. (2009) Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther., 10, 2894–2902.

    Google Scholar 

  16. Bartek, J. and Lukas, J. (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 3, 421–429.

    Article  PubMed  CAS  Google Scholar 

  17. Kortmansky, J., Shah, M.A., Kaubisch, A., Weyerbacher, A., Yi, S., Tong, W., Sowers, R., Gonen, M., O’Reilly, E., Kemeny, N. et al. (2005) Phase I trial of the cyclin-dependent kinase inhibitor and protein kinase C inhibitor 7-hydroxystaurosporine in combination with Fluorouracil in patients with advanced solid tumors. J. Clin. Oncol., 23, 1875–1884.

    Article  PubMed  CAS  Google Scholar 

  18. Bucher, N. and Britten, C.D. (2008) G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br. J. Cancer, 98, 523–528.

    Article  PubMed  CAS  Google Scholar 

  19. Zabludoff, S.D., Deng, C., Grondine, M.R., Sheehy, A.M., Ashwell, S., Caleb, B.L., Green, S., Haye, H.R., Horn, C.L., Janetka, J.W. et al. (2008) AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol. Cancer Ther., 7, 2955–2966.

    Article  PubMed  CAS  Google Scholar 

  20. Sha, S.K., Sato, T., Kobayashi, H., Ishigaki, M., Yamamoto, S., Sato, H., Takada, A., Nakajyo, S., Mochizuki, Y., Friedman, J.M. et al. (2007) Cell cycle phenotype-based optimization of G2-abrogating peptides yields CBP501 with a unique mechanism of action at the G2 checkpoint. Mol. Cancer Ther., 6, 147–153.

    Article  PubMed  CAS  Google Scholar 

  21. Blasina, A., Hallin, J., Chen, E., Arango, M.E., Kraynov, E., Register, J., Grant, S., Ninkovic, S., Chen, P., Nichols, T. et al. (2008) Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol. Cancer Ther., 7, 2394–2404.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, C., Yan, Z., Painter, C.L., Zhang, Q., Chen, E., Arango, M.E., Kuszpit, K., Zasadny, K., Hallin, M., Hallin, J. et al. (2009) PF-00477736 mediates checkpoint kinase 1 signaling pathway and potentiates docetaxel-induced efficacy in xenografts. Clin. Cancer Res., 15, 4630–4640.

    Article  PubMed  CAS  Google Scholar 

  23. Matthews, D.J., Yakes, F.M., Chen, J., Tadano, M., Bornheim, L., Clary, D.O., Tai, A., Wagner, J.M., Miller, N., Kim, Y.D. et al. (2007) Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo. Cell Cycle, 6, 104–110.

    Article  PubMed  CAS  Google Scholar 

  24. Sorensen, C.S., Syljuasen, R.G., Falck, J., Schroeder, T., Ronnstrand, L., Khanna, K.K., Zhou, B.B., Bartek, J. and Lukas, J. (2003) Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell, 3, 247–258.

    Article  PubMed  CAS  Google Scholar 

  25. Syljuasen, R.G., Sorensen, C.S., Nylandsted, J., Lukas, C., Lukas, J. and Bartek, J. (2004) Inhibition of Chk1 by CEP-3891 accelerates mitotic nuclear fragmentation in response to ionizing Radiation. Cancer Res., 64, 9035–9040.

    Article  PubMed  CAS  Google Scholar 

  26. Tse, A.N., Rendahl, K.G., Sheikh, T., Cheema, H., Aardalen, K., Embry, M., Ma, S., Moler, E.J., Ni, Z.J., Lopes de Menezes, D.E. et al. (2007) CHIR-124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoisomerase I poisons in vitro and in vivo. Clin. Cancer Res., 13, 591–602.

    Article  PubMed  CAS  Google Scholar 

  27. Parsels, L.A., Morgan, M.A., Tanska, D.M., Parsels, J.D., Palmer, B.D., Booth, R.J., Denny, W.A., Canman, C.E., Kraker, A.J., Lawrence, T.S. et al. (2009) Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol. Cancer Ther., 8, 45–54.

    Article  PubMed  CAS  Google Scholar 

  28. Schellens, J.H., Leijen, S., Shapiro, G.I., Pavlick, A.C., Tibes, R., O’Day, S.J., Demuth, T., Viscusi, J., Xu, Y. and Oza, A.M. (2009) A phase I and pharmacological study of MK-1775, a Wee1 tyrosine kinase inhibitor, in both monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J. Clin. Oncol., 27, 3510.

    Article  Google Scholar 

  29. Mizuarai, S., Yamanaka, K., Itadani, H., Arai, T., Nishibata, T., Hirai, H. and Kotani, H. (2009) Discovery of gene expression-based pharmacodynamic biomarker for a p53 context-specific anti-tumor drug Wee1 inhibitor. Mol. Cancer, 8, 34.

    Article  PubMed  Google Scholar 

  30. Wang, Y., Li, J., Booher, R.N., Kraker, A., Lawrence, T., Leopold, W.R. and Sun, Y. (2001) Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res, 61, 8211–8217.

    PubMed  CAS  Google Scholar 

  31. Hashimoto, O., Shinkawa, M., Torimura, T., Nakamura, T., Selvendiran, K., Sakamoto, M., Koga, H., Ueno, T. and Sata, M. (2006) Cell cycle regulation by the Wee1 inhibitor PD0166285, pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell line. BMC Cancer, 6, 292.

    Article  PubMed  Google Scholar 

  32. Arlander, S.J., Eapen, A.K., Vroman, B.T., McDonald, R.J., Toft, D.O. and Karnitz, L.M. (2003) Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J. Biol. Chem., 278, 52572–52577.

    Article  PubMed  CAS  Google Scholar 

  33. Tse, A.N., Sheikh, T.N., Alan, H., Chou, T.C. and Schwartz, G.K. (2009) 90-kDa heat shock protein inhibition abrogates the topoisomerase I poison-induced G2/M checkpoint in p53-null tumor cells by depleting Chk1 and Wee1. Mol. Pharmacol., 75, 124–133.

    Article  PubMed  CAS  Google Scholar 

  34. Tse, A.N., Klimstra, D.S., Gonen, M., Shah, M., Sheikh, T., Sikorski, R., Carvajal, R., Mui, J., Tipian, C., O’Reilly, E. et al. (2008) A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin. Cancer Res., 14, 6704–6711.

    Article  PubMed  CAS  Google Scholar 

  35. Dai, Y., Yu, C., Singh, V., Tang, L., Wang, Z., McInistry, R., Dent, P. and Grant, S. (2001) Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells. Cancer Res., 61, 5106–5115.

    PubMed  CAS  Google Scholar 

  36. Dai, Y., Hamm, T.E., Dent, P. and Grant, S. (2006) Cyclin D1 overexpression increases the susceptibility of human U266 myeloma cells to CDK inhibitors through a process involving p130-, p107- and E2F-dependent S phase entry. Cell Cycle, 5, 437–446.

    Article  PubMed  CAS  Google Scholar 

  37. Dai, Y., Rahmani, M., Pei, X.Y., Khanna, P., Han, S.I., Mitchell, C., Dent, P. and Grant, S. (2005) Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood, 15, 1706–1716.

    Article  Google Scholar 

  38. Branzei, D. and Foiani, M. (2008) Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol., 9, 297–308.

    Article  PubMed  CAS  Google Scholar 

  39. Lobrich, M. and Jeggo, P.A. (2007) The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat. Rev. Cancer, 7, 861–869.

    Article  PubMed  Google Scholar 

  40. Falck, J., Petrini, J.H., Williams, B.R., Lukas, J. and Bartek, J. (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat. Genet., 30, 290–294.

    Article  PubMed  Google Scholar 

  41. Liu, P., Barkley, L.R., Day, T., Bi, X., Slater, D.M., Alexandrow, M.G., Nasheuer, H.P. and Vaziri, C. (2006) The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism. J. Biol. Chem., 281, 30631–30644.

    Article  PubMed  CAS  Google Scholar 

  42. Yang, X.H. and Zou, L. (2009) Dual functions of DNA replication forks in checkpoint signaling and PCNA ubiquitination. Cell Cycle, 8, 191–194.

    Article  PubMed  CAS  Google Scholar 

  43. Beckerman, R., Donner, A.J., Mattia, M., Peart, M.J., Manley, J.L., Espinosa, J.M. and Prives, C. (2009) A role for Chk1 in blocking transcriptional elongation of p21 RNA during the S-phase checkpoint. Genes Dev., 23, 1364–1377.

    Article  PubMed  CAS  Google Scholar 

  44. Kuntz, K. and O’Connell, M.J. (2009) The G(2) DNA damage checkpoint: Could this ancient regulator be the achilles heel of cancer? Cancer Biol. Ther., 8.

    Google Scholar 

  45. de Bruin, R.A. and Wittenberg, C. (2009) All eukaryotes: before turning off G1-S transcription, please check your DNA. Cell Cycle, 8, 214–217.

    Article  PubMed  Google Scholar 

  46. Zachos, G., Black, E.J., Walker, M., Scott, M.T., Vagnarelli, P., Earnshaw, W.C. and Gillespie, D.A. (2007) Chk1 is required for spindle checkpoint function. Dev. Cell, 12, 247–260.

    Article  PubMed  CAS  Google Scholar 

  47. Peddibhotla, S., Lam, M.H., Gonzalez-Rimbau, M. and Rosen, J.M. (2009) The DNA-damage effector checkpoint kinase 1 is essential for chromosome segregation and cytokinesis. Proc. Natl. Acad. Sci. USA, 106, 5159–5164.

    Article  PubMed  CAS  Google Scholar 

  48. Tang, J., Erikson, R.L. and Liu, X. (2006) Checkpoint kinase 1 (Chk1) is required for mitotic progression through negative regulation of polo-like kinase 1 (Plk1). Proc. Natl. Acad. Sci. USA, 103, 11964–11969.

    Article  PubMed  CAS  Google Scholar 

  49. Goudelock, D.M., Jiang, K., Pereira, E., Russell, B. and Sanchez, Y. (2003) Regulatory interactions between the checkpoint kinase Chk1 and the proteins of the DNA-dependent protein kinase complex. J. Biol. Chem., 278, 29940–29947.

    Article  PubMed  CAS  Google Scholar 

  50. Sorensen, C.S., Hansen, L.T., Dziegielewski, J., Syljuasen, R.G., Lundin, C., Bartek, J. and Helleday, T. (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat. Cell Biol., 7, 195–201.

    Article  PubMed  CAS  Google Scholar 

  51. Chen, C.C., Kennedy, R.D., Sidi, S., Look, A.T. and D’Andrea, A. (2009) CHK1 inhibition as a strategy for targeting Fanconi Anemia (FA) DNA repair pathway deficient tumors. Mol. Cancer, 8, 24.

    Article  PubMed  Google Scholar 

  52. Wang, X., Kennedy, R.D., Ray, K., Stuckert, P., Ellenberger, T. and D’Andrea, A.D. (2007) Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol. Cell Biol., 27, 3098–3108.

    Article  PubMed  CAS  Google Scholar 

  53. Syljuasen, R.G., Sorensen, C.S., Hansen, L.T., Fugger, K., Lundin, C., Johansson, F., Helleday, T., Sehested, M., Lukas, J. and Bartek, J. (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell Biol., 25, 3553–3562.

    Article  PubMed  CAS  Google Scholar 

  54. Myers, K., Gagou, M.E., Zuazua-Villar, P., Rodriguez, R. and Meuth, M. (2009) ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress. PLoS. Genet., 5, e1000324.

    Article  PubMed  Google Scholar 

  55. Sidi, S., Sanda, T., Kennedy, R.D., Hagen, A.T., Jette, C.A., Hoffmans, R., Pascual, J., Imamura, S., Kishi, S., Amatruda, J.F. et al. (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell, 133, 864–877.

    Article  PubMed  CAS  Google Scholar 

  56. Matsuura, K., Wakasugi, M., Yamashita, K. and Matsunaga, T. (2008) Cleavage-mediated activation of Chk1 during apoptosis. J. Biol. Chem., 283, 25485–25491.

    Article  PubMed  CAS  Google Scholar 

  57. Shimada, M., Niida, H., Zineldeen, D.H., Tagami, H., Tanaka, M., Saito, H. and Nakanishi, M. (2008) Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell, 132, 221–232.

    Article  PubMed  CAS  Google Scholar 

  58. Dai, Y., Landowski, T.H., Rosen, S.T., Dent, P. and Grant, S. (2002) Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism. Blood, 100, 3333–3343.

    Article  PubMed  CAS  Google Scholar 

  59. Dai, Y., Chen, S., Pei, X.Y., Almenara, J.A., Kramer, L.B., Venditti, C.A., Dent, P. and Grant, S. (2008) Interruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor–induced DNA damage in vitro and in vivo in human multiple myeloma cells. Blood, 112, 2439–2449.

    Article  PubMed  CAS  Google Scholar 

  60. Dai, Y., Chen, S., Shah, R., Pei, X.Y., Wang, L., Almenara, J.A., Kramer, L.B., Dent, P. and Grant, S. (2011) Disruption of Src function potentiates Chk1-inhibitor-induced apoptosis in human multiple myeloma cells in vitro and in vivo. Blood, 117, 1947–1957.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by awards CA63753, CA 93738, and CA100866, and 1 P50 CA130805-01, 1 P50CA142509-01 and its DRP award (29859/98018093) from the National Cancer Institute, Senior Research Award from Multiple Myeloma Research Foundation, award 6045-03 from the Leukemia and Lymphoma Society of America, and an award from the V Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dai, Y., Grant, S. (2011). Methods to Study Cancer Therapeutic Drugs That Target Cell Cycle Checkpoints. In: Li, W. (eds) Cell Cycle Checkpoints. Methods in Molecular Biology, vol 782. Humana Press. https://doi.org/10.1007/978-1-61779-273-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-273-1_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-272-4

  • Online ISBN: 978-1-61779-273-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics