Skip to main content

Talin and Signaling Through Integrins

  • Protocol
  • First Online:
Integrin and Cell Adhesion Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 757))

Abstract

Integrin adhesion receptors are essential for the development and functioning of multicellular animals. Integrins mediate cell adhesion to the extracellular matrix and to counter-receptors on adjacent cells, and the ability of integrins to bind extracellular ligands is regulated in response to intracellular signals that act on the short cytoplasmic tails of integrin subunits. Integrin activation, the rapid conversion of integrin receptors from low to high affinity, requires binding of talin to integrin β tails and, once bound, talin provides a connection from activated integrins to the actin cytoskeleton. A wide range of experimental approaches have contributed to the current understanding of the importance of talin in integrin signaling. Here, we describe two methods that have been central to our investigations of talin; a biochemical assay that has allowed characterization of interactions between integrin cytoplasmic tails and talin, and a fluorescent-activated cell-sorting procedure to assess integrin activation in cultured cells expressing talin domains, mutants, dominant negative constructs, or shRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luo, B. H., Carman, C. V., and Springer, T. A. (2007) Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647.

    Article  PubMed  CAS  Google Scholar 

  2. Arnaout, M. A., Goodman, S. L., and Xiong, J. P. (2007) Structure and mechanics of integrin-based cell adhesion. Curr. Opin. Cell Biol. 19, 495–507.

    Article  PubMed  CAS  Google Scholar 

  3. Harburger, D., and Calderwood, D. A. (2009) Integrin signalling at a glance. J. Cell Sci. 122, 159–163.

    Article  PubMed  CAS  Google Scholar 

  4. Hynes, R. O. (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687.

    Article  PubMed  CAS  Google Scholar 

  5. Askari, J., Buckley, P., Mould, A., and Humphries, M. (2009) Linking integrin conformation to function. J Cell. Sci. 122, 165–170.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, J., Salas, A., and Springer, T. A. (2003) Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster. Nat. Struct. Biol. 10, 995–1001.

    Article  PubMed  CAS  Google Scholar 

  7. Ginsberg, M. H., Partridge, A., and Shattil, S. J. (2005) Integrin regulation. Curr. Opin. Cell Biol. 17, 509–516.

    Article  PubMed  CAS  Google Scholar 

  8. Humphries, J., Byron, A., and Humphries, M. (2006) Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903.

    Article  PubMed  CAS  Google Scholar 

  9. Evans, E. A., and Calderwood, D. A. (2007) Forces and bond dynamics in cell adhesion. Science 316, 1148–1153.

    Article  PubMed  CAS  Google Scholar 

  10. Legate, K. R., and Fassler, R. (2009) Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J. Cell Sci. 122, 187–198.

    Article  PubMed  CAS  Google Scholar 

  11. Hynes, R. O. (2007) Cell-matrix adhesion in vascular development. J. Thromb. Haemost. 5 Suppl 1, 32–40.

    Google Scholar 

  12. Brakebusch, C., and Fassler, R. (2005) β1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis. Rev. 24, 403–411.

    Article  PubMed  CAS  Google Scholar 

  13. Dupuy, A. G., and Caron, E. (2008) Integrin-dependent phagocytosis: spreading from microadhesion to new concepts. J. Cell Sci. 121, 1773–1783.

    Article  PubMed  CAS  Google Scholar 

  14. Aplin, J. D. (1997) Adhesion molecules in implantation. Rev. Reprod. 2, 84–93.

    Article  PubMed  CAS  Google Scholar 

  15. Petri, B., Phillipson, M., and Kubes, P. (2008) The physiology of leukocyte recruitment: an in vivo perspective. J. Immunol. 180, 6439–6446.

    PubMed  CAS  Google Scholar 

  16. Nieswandt, B., Moser, M., Pleines, I., Varga-Szabo, D., Monkley, S., Critchley, D., and Fassler, R. (2007) Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J. Exp. Med. 204, 3113–3118.

    Article  PubMed  CAS  Google Scholar 

  17. Takagi, J., and Springer, T. A. (2002) Integrin activation and structural rearrangement. Immunol. Rev. 186, 141–163.

    Article  PubMed  CAS  Google Scholar 

  18. Calderwood, D. A., and Ginsberg, M. H. (2003) Talin forges the links between integrins and actin. Nat. Cell. Biol. 5, 694–697.

    Article  PubMed  CAS  Google Scholar 

  19. Critchley, D. R. (2009) Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu. Rev. Biophys. 38, 235–254.

    Article  PubMed  CAS  Google Scholar 

  20. Moser, M., Legate, K. R., Zent, R., and Fassler, R. (2009) The tail of integrins, talin, and kindlins. Science 324, 895–899.

    Article  PubMed  CAS  Google Scholar 

  21. Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E., and Sheetz, M. P. (2003) Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, X., Jiang, G., Cai, Y., Monkley, S. J., Critchley, D. R., and Sheetz, M. P. (2008) Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat. Cell Biol. 10, 1062–1068.

    Article  PubMed  CAS  Google Scholar 

  23. Calderwood, D. A., Yan, B., de Pereda, J. M., Alvarez, B. G., Fujioka, Y., Liddington, R. C., and Ginsberg, M. H. (2002) The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758.

    Article  PubMed  CAS  Google Scholar 

  24. Critchley, D. R. (2004) Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochem. Soc. Trans. 32, 831–836.

    Article  PubMed  CAS  Google Scholar 

  25. Calderwood, D. A., Fujioka, Y., de Pereda, J. M., Garcia-Alvarez, B., Nakamoto, T., Margolis, B., McGlade, C. J., Liddington, R. C., and Ginsberg, M. H. (2003) Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl. Acad. Sci. USA. 100, 2272–2277.

    Article  PubMed  CAS  Google Scholar 

  26. Papagrigoriou, E., Gingras, A. R., Barsukov, I. L., Bate, N., Fillingham, I. J., Patel, B., Frank, R., Ziegler, W. H., Roberts, G. C., Critchley, D. R., and Emsley, J. (2004) Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. EMBO J. 23, 2942–2951.

    Article  PubMed  CAS  Google Scholar 

  27. Gingras, A. R., Ziegler, W. H., Frank, R., Barsukov, I. L., Roberts, G. C., Critchley, D. R., and Emsley, J. (2005) Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J. Biol. Chem. 280, 37217–37224.

    Article  PubMed  CAS  Google Scholar 

  28. Lee, H. S., Bellin, R. M., Walker, D. L., Patel, B., Powers, P., Liu, H., Garcia-Alvarez, B., de Pereda, J. M., Liddington, R. C., Volkmann, N., Hanein, D., Critchley, D. R., and Robson, R. M. (2004) Characterization of an actin-binding site within the talin FERM domain. J. Mol. Biol. 343, 771–784.

    Article  PubMed  CAS  Google Scholar 

  29. Gingras, A. R., Bate, N., Goult, B. T., Hazelwood, L., Canestrelli, I., Grossmann, J. G., Liu, H., Putz, N. S., Roberts, G. C., Volkmann, N., Hanein, D., Barsukov, I. L., and Critchley, D. R. (2008) The structure of the C-terminal actin-binding domain of talin. EMBO J. 27, 458–469.

    Article  PubMed  CAS  Google Scholar 

  30. Burridge, K., and Mangeat, P. (1984) An interaction between vinculin and talin Nature 308, 744–746.

    Google Scholar 

  31. Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C., and Burridge, K. (1986) Interaction of plasma membrane fibronectin receptor with talin–a transmembrane linkage. Nature 320, 531–533.

    Article  PubMed  CAS  Google Scholar 

  32. del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J. M., and Sheetz, M. P. (2009) Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641.

    Article  PubMed  Google Scholar 

  33. Calderwood, D. A., Zent, R., Grant, R., Rees, D. J., Hynes, R. O., and Ginsberg, M. H. (1999) The Talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074.

    Article  PubMed  CAS  Google Scholar 

  34. Tadokoro, S., Shattil, S. J., Eto, K., Tai, V., Liddington, R. C., de Pereda, J. M., Ginsberg, M. H., and Calderwood, D. A. (2003) Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106.

    Article  PubMed  CAS  Google Scholar 

  35. Calderwood, D. A. (2004) Integrin activation. J. Cell Sci. 117, 657–666.

    Article  PubMed  CAS  Google Scholar 

  36. Wegener, K. L., Partridge, A. W., Han, J., Pickford, A. R., Liddington, R. C., Ginsberg, M. H., and Campbell, I. D. (2007) Structural basis of integrin activation by talin. Cell 128, 171–182.

    Article  PubMed  CAS  Google Scholar 

  37. Czuchra, A., Meyer, H., Legate, K. R., Brakebusch, C., and Fassler, R. (2006) Genetic analysis of beta1 integrin “activation motifs” in mice. J. Cell Biol. 174, 889–899.

    Article  PubMed  CAS  Google Scholar 

  38. Tsujioka, M., Yoshida, K., Nagasaki, A., Yonemura, S., Muller-Taubenberger, A., and Uyeda, T. Q. (2008) Overlapping functions of the two talin homologues in Dictyostelium. Eukaryot. Cell 7, 906–916.

    Article  PubMed  CAS  Google Scholar 

  39. Tanentzapf, G., Martin-Bermudo, M. D., Hicks, M. S., and Brown, N. H. (2006) Multiple factors contribute to integrin-talin interactions in vivo. J. Cell Sci. 119, 1632–1644.

    Article  PubMed  CAS  Google Scholar 

  40. Ratnikov, B. I., Partridge, A. W., and Ginsberg, M. H. (2005) Integrin activation by talin. J. Thromb. Haemost. 3, 1783–1790.

    Article  PubMed  CAS  Google Scholar 

  41. Wennerberg, K., Fassler, R., Warmegard, B., and Johansson, S. (1998) Mutational analysis of the potential phosphorylation sites in the cytoplasmic domain of integrin β1A. Requirement for threonines 788–789 in receptor activation. J. Cell. Sci. 111 ( Pt 8), 1117–1126.

    Google Scholar 

  42. Yan, B., Calderwood, D. A., Yaspan, B., and Ginsberg, M. H. (2001) Calpain cleavage promotes talin binding to the β3 integrin cytoplasmic domain. J. Biol. Chem. 276, 28164–28170.

    Article  PubMed  CAS  Google Scholar 

  43. Goksoy, E., Ma, Y. Q., Wang, X., Kong, X., Perera, D., Plow, E. F., and Qin, J. (2008) Structural basis for the autoinhibition of talin in regulating integrin activation. Mol. Cell 31, 124–133.

    Article  PubMed  CAS  Google Scholar 

  44. Goult, B. T., Bate, N., Anthis, N. J., Wegener, K. L., Gingras, A. R., Patel, B., Barsukov, I. L., Campbell, I. D., Roberts, G. C., and Critchley, D. R. (2009) The structure of an interdomain complex that regulates talin activity. J. Biol. Chem. 284, 15097–15106.

    Article  PubMed  CAS  Google Scholar 

  45. Han, J., Lim, C. J., Watanabe, N., Soriani, A., Ratnikov, B., Calderwood, D. A., Puzon-McLaughlin, W., Lafuente, E. M., Boussiotis, V. A., Shattil, S. J., and Ginsberg, M. H. (2006) Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3. Curr. Biol. 16, 1796–1806.

    Article  PubMed  CAS  Google Scholar 

  46. Lee, H. S., Lim, C. J., Puzon-McLaughlin, W., Shattil, S. J., and Ginsberg, M. H. (2009) RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J. Biol. Chem. 284, 5119–5127.

    Article  PubMed  CAS  Google Scholar 

  47. Martel, V., Racaud-Sultan, C., Dupe, S., Marie, C., Paulhe, F., Galmiche, A., Block, M. R., and Albiges-Rizo, C. (2001) Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem. 276, 21217–21227.

    Article  PubMed  CAS  Google Scholar 

  48. Kiema, T., Lad, Y., Jiang, P., Oxley, C. L., Baldassarre, M., Wegener, K. L., Campbell, I. D., Ylanne, J., and Calderwood, D. A. (2006) The molecular basis of filamin binding to integrins and competition with talin. Mol. Cell 21, 337–347.

    Article  PubMed  CAS  Google Scholar 

  49. Takala, H., Nurminen, E., Nurmi, S. M., Aatonen, M., Strandin, T., Takatalo, M., Kiema, T., Gahmberg, C. G., Ylanne, J., and Fagerholm, S. C. (2008) β2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding. Blood 112, 1853–1562.

    Article  PubMed  CAS  Google Scholar 

  50. Bouaouina, M., Lad, Y., and Calderwood, D. A. (2008) The N-terminal domains of talin cooperate with the phosphotyrosine binding-like domain to activate beta1 and β3 integrins. J. Biol. Chem. 283, 6118–6125.

    Article  PubMed  CAS  Google Scholar 

  51. Larjava, H., Plow, E. F., and Wu, C. (2008) Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep. 9, 1203–1208.

    Article  PubMed  CAS  Google Scholar 

  52. Ramos, J. W., and DeSimone, D. W. (1996) Xenopus embryonic cell adhesion to fibronectin: position-specific activation of RGD/synergy site-dependent migratory behavior at gastrulation. J. Cell Biol. 134, 227–240.

    Article  PubMed  CAS  Google Scholar 

  53. O’Toole, T. E., Katagiri, Y., Faull, R. J., Peter, K., Tamura, R., Quaranta, V., Loftus, J. C., Shattil, S. J., and Ginsberg, M. H. (1994) Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol. 124, 1047–1059.

    Article  PubMed  Google Scholar 

  54. Calderwood, D. A., Tai, V., Di Paolo, G., De Camilli, P., and Ginsberg, M. H. (2004) Competition for talin results in trans-dominant inhibition of integrin activation. J. Biol. Chem. 279, 28889–28895.

    Article  PubMed  CAS  Google Scholar 

  55. Lad, Y., Harburger, D. S., and Calderwood, D. A. (2007) Integrin cytoskeletal interactions. Methods Enzymol. 426, 69–84.

    Article  PubMed  CAS  Google Scholar 

  56. Pfaff, M., Liu, S., Erle, D. J., and Ginsberg, M. H. (1998) Integrin β cytoplasmic domains differentially bind to cytoskeletal proteins. J. Biol. Chem. 273, 6104–6109.

    Article  PubMed  CAS  Google Scholar 

  57. Garcia-Alvarez, B., de Pereda, J. M., Calderwood, D. A., Ulmer, T. S., Critchley, D., Campbell, I. D., Ginsberg, M. H., and Liddington, R. C. (2003) Structural determinants of integrin recognition by talin. Mol. Cell 11, 49–58.

    Article  PubMed  CAS  Google Scholar 

  58. Matter, M. L., Ginsberg, M. H., and Ramos, J. W. (2001) Identification of cell signaling molecules by expression cloning. Sci. STKE 2001, PL9.

    Google Scholar 

  59. Harburger, D. S., Bouaouina, M., and Calderwood, D. A. (2009) Kindlin-1 and −2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J. Biol. Chem. 284, 11485–11497.

    Article  PubMed  CAS  Google Scholar 

  60. Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M., and Fassler, R. (2008) Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–30.

    Article  PubMed  CAS  Google Scholar 

  61. Ma, Y. Q., Qin, J., Wu, C., and Plow, E. F. (2008) Kindlin-2 (Mig-2): a co-activator of β3 integrins J. Cell Biol. 181, 439–446.

    Google Scholar 

  62. Stewart, M. P., Cabanas, C., and Hogg, N. (1996) T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1. J. Immunol. 156, 1810–1817.

    PubMed  CAS  Google Scholar 

  63. Ginsberg, M. H., Frelinger, A. L., Lam, S. C., Forsyth, J., McMillan, R., Plow, E. F., and Shattil, S. J. (1990) Analysis of platelet aggregation disorders based on flow cytometric analysis of membrane glycoprotein IIb-IIIa with conformation-specific monoclonal antibodies. Blood 76, 2017–2023.

    PubMed  CAS  Google Scholar 

  64. Stallmach, A., Giese, T., Pfister, K., Wittig, B. M., Kunne, S., Humphries, M., Zeitz, M., and Meuer, S. C. (2001) Activation of β1 integrins mediates proliferation and inhibits apoptosis of intestinal CD4-positive lymphocytes. Eur. J. Immunol. 31, 1228–1238.

    Article  PubMed  CAS  Google Scholar 

  65. Heilmann, E., Hynes, L. A., Burstein, S. A., George, J. N., and Dale, G. L. (1994) Fluorescein derivatization of fibrinogen for flow cytometric analysis of fibrinogen binding to platelets. Cytometry 17, 287–293.

    Article  PubMed  CAS  Google Scholar 

  66. Shattil, S. J., Cunningham, M., and Hoxie, J. A. (1987) Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 70, 307–315.

    PubMed  CAS  Google Scholar 

  67. Dransfield, I., and Hogg, N. (1989) Regulated expression of Mg2+ binding epitope on leukocyte integrin β subunits. EMBO J. 8, 3759–3765.

    PubMed  CAS  Google Scholar 

  68. Luque, A., Gomez, M., Puzon, W., Takada, Y., Sanchez-Madrid, F., and Cabanas, C. (1996) Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common β1 chain. J. Biol. Chem. 271, 11067–11075.

    Article  PubMed  CAS  Google Scholar 

  69. Taub, R., Gould, R. J., Garsky, V. M., Ciccarone, T. M., Hoxie, J., Friedman, P. A., and Shattil, S. J. (1989) A monoclonal antibody against the platelet fibrinogen receptor contains a sequence that mimics a receptor recognition domain in fibrinogen. J. Biol. Chem. 264, 259–265.

    PubMed  CAS  Google Scholar 

  70. Shattil, S. J., Hoxie, J. A., Cunningham, M., and Brass, L. F. (1985) Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J. Biol. Chem. 260, 11107–11114.

    Google Scholar 

  71. Shattil, S. J., Motulsky, H. J., Insel, P. A., Flaherty, L., and Brass, L. F. (1986) Expression of fibrinogen receptors during activation and subsequent desensitization of human platelets by epinephrine. Blood 68, 1224–1231.

    PubMed  CAS  Google Scholar 

  72. Pampori, N., Hato, T., Stupack, D. G., Aidoudi, S., Cheresh, D. A., Nemerow, G. R., and Shattil, S. J. (1999) Mechanisms and consequences of affinity modulation of integrin αVβ3 detected with a novel patch-engineered monovalent ligand. J. Biol. Chem. 274, 21609–21616.

    Article  PubMed  CAS  Google Scholar 

  73. Bertoni, A., Tadokoro, S., Eto, K., Pampori, N., Parise, L. V., White, G. C., and Shattil, S. J. (2002) Relationships between Rap1b, affinity modulation of integrin αIIbβ3, and the actin cytoskeleton. J. Biol. Chem. 277, 25715–25721.

    Article  PubMed  CAS  Google Scholar 

  74. Bunch, T. A., Helsten, T. L., Kendall, T. L., Shirahatti, N., Mahadevan, D., Shattil, S. J., and Brower, D. L. (2006) Amino acid changes in Drosophila αPS2βPS integrins that affect ligand affinity. J. Biol. Chem. 281, 5050–5057.

    Article  PubMed  CAS  Google Scholar 

  75. Kashiwagi, H., Tomiyama, Y., Tadokoro, S., Honda, S., Shiraga, M., Mizutani, H., Handa, M., Kurata, Y., Matsuzawa, Y., and Shattil, S. J. (1999) A mutation in the extracellular cysteine-rich repeat region of the β3 subunit activates integrins αIIbβ3 and αVβ3. Blood 93, 2559–2568.

    PubMed  CAS  Google Scholar 

  76. Montanez, E., Ussar, S., Schifferer, M., Bosl, M., Zent, R., Moser, M., and Fassler, R. (2008) Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330.

    Article  PubMed  CAS  Google Scholar 

  77. Chan, J. R., Hyduk, S. J., and Cybulsky, M. I. (2001) Chemoattractants induce a rapid and transient upregulation of monocyte α4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J. Exp. Med. 193, 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  78. Chan, J. R., Hyduk, S. J., and Cybulsky, M. I. (2003) Detecting rapid and transient upregulation of leukocyte integrin affinity induced by chemokines and chemoattractants. J. Immunol. Methods 273, 43–52.

    Article  PubMed  CAS  Google Scholar 

  79. Weber, K. S., Ostermann, G., Zernecke, A., Schroder, A., Klickstein, L. B., and Weber, C. (2001) Dual role of H-Ras in regulation of lymphocyte function antigen-1 activity by stromal cell-derived factor-1α: implications for leukocyte transmigration. Mol. Biol. Cell 12, 3074–3086.

    PubMed  CAS  Google Scholar 

  80. Hughes, P. E., Oertli, B., Hansen, M., Chou, F. L., Willumsen, B. M., and Ginsberg, M. H. (2002) Suppression of integrin activation by activated Ras or Raf does not correlate with bulk activation of ERK MAP kinase. Mol. Biol. Cell 13, 2256–2265.

    Article  PubMed  CAS  Google Scholar 

  81. Bowditch, R. D., Hariharan, M., Tominna, E. F., Smith, J. W., Yamada, K. M., Getzoff, E. D., and Ginsberg, M. H. (1994) Identification of a novel integrin binding site in fibronectin. Differential utilization by β3 integrins. J. Biol. Chem. 269, 10856–10863.

    Google Scholar 

  82. Heckmann, D., Meyer, A., Marinelli, L., Zahn, G., Stragies, R., and Kessler, H. (2007) Probing integrin selectivity: rational design of highly active and selective ligands for the α5β1 and αvβ3 integrin receptor. Angew. Chem. Int. Ed. Engl. 46, 3571–3574.

    Article  PubMed  Google Scholar 

  83. O’Toole, T. E., Ylanne, J., and Culley, B. M. (1995) Regulation of integrin affinity states through an NPXY motif in the β subunit cytoplasmic domain. J. Biol. Chem. 270, 8553–8558.

    Article  PubMed  Google Scholar 

  84. Kouns, W. C., Kirchhofer, D., Hadvary, P., Edenhofer, A., Weller, T., Pfenninger, G., Baumgartner, H. R., Jennings, L. K., and Steiner, B. (1992) Reversible conformational changes induced in glycoprotein IIb-IIIa by a potent and selective peptidomimetic inhibitor. Blood 80, 2539–2547.

    PubMed  CAS  Google Scholar 

  85. Abrams, C., Deng, Y. J., Steiner, B., O’Toole, T., and Shattil, S. J. (1994) Determinants of specificity of a baculovirus-expressed antibody Fab fragment that binds selectively to the activated form of integrin αIIbβ3. J. Biol. Chem. 269, 18781–18788.

    PubMed  CAS  Google Scholar 

  86. Bouaouina, M., Blouin, E., Halbwachs-Mecarelli, L., Lesavre, P., and Rieu, P. (2004) TNF-induced β2 integrin activation involves Src kinases and a redox-regulated activation of p38 MAPK. J. Immunol. 173, 1313–1320.

    PubMed  CAS  Google Scholar 

  87. Rose, D. M., Liu, S., Woodside, D. G., Han, J., Schlaepfer, D. D., and Ginsberg, M. H. (2003) Paxillin binding to the α4 integrin subunit stimulates LFA-1 (integrin αLβ2)-dependent T cell migration by augmenting the activation of focal adhesion kinase/proline-rich tyrosine kinase-2. J. Immunol. 170, 5912–5918.

    PubMed  CAS  Google Scholar 

  88. Eto, K., Leavitt, A. L., Nakano, T., and Shattil, S. J. (2003) Development and analysis of megakaryocytes from murine embryonic stem cells. Methods Enzymol. 365, 142–158.

    Article  PubMed  Google Scholar 

  89. Shiraga, M., Ritchie, A., Aidoudi, S., Baron, V., Wilcox, D., White, G., Ybarrondo, B., Murphy, G., Leavitt, A., and Shattil, S. (1999) Primary megakaryocytes reveal a role for transcription factor NF-E2 in integrin αIIbβ3 signaling. J. Cell. Biol. 147, 1419–1430.

    Article  PubMed  CAS  Google Scholar 

  90. Kashiwagi, H., Shiraga, M., Honda, S., Kosugi, S., Kamae, T., Kato, H., Kurata, Y., and Tomiyama, Y. (2004) Activation of integrin αIIbβ3 in the glycoprotein Ib-high population of a megakaryocytic cell line, CMK, by inside-out signaling. J. Thromb. Haemost. 2, 177–186.

    Article  PubMed  CAS  Google Scholar 

  91. O’Toole, T. E., Loftus, J. C., Du, X. P., Glass, A. A., Ruggeri, Z. M., Shattil, S. J., Plow, E. F., and Ginsberg, M. H. (1990) Affinity modulation of the αIIbβ3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor. Cell. Regul. 1, 883–893.

    PubMed  Google Scholar 

  92. Harper, P. A., and Juliano, R. L. (1981) Fibronectin-independent adhesion of fibroblasts to the extracellular matrix: mediation by a high molecular weight membrane glycoprotein. J. Cell. Biol. 91, 647–653.

    Article  PubMed  CAS  Google Scholar 

  93. Calderwood, D. A., Huttenlocher, A., Kiosses, W. B., Rose, D. M., Woodside, D. G., Schwartz, M. A., and Ginsberg, M. H. (2001) Increased filamin binding to β-integrin cytoplasmic domains inhibits cell migration. Nat. Cell Biol. 3, 1060–1068.

    Article  PubMed  CAS  Google Scholar 

  94. Prevost, N., Kato, H., Bodin, L., and Shattil, S. J. (2007) Platelet integrin adhesive functions and signaling. Methods Enzymol. 426, 103–115.

    Article  PubMed  CAS  Google Scholar 

  95. Brown, P. J., and Juliano, R. L. (1985) Selective inhibition of fibronectin-mediated cell adhesion by monoclonal antibodies to a cell-surface glycoprotein. Science 228, 1448–1451.

    Article  PubMed  CAS  Google Scholar 

  96. Chou, F. L., Hill, J. M., Hsieh, J. C., Pouyssegur, J., Brunet, A., Glading, A., Uberall, F., Ramos, J. W., Werner, M. H., and Ginsberg, M. H. (2003) PEA-15 binding to ERK1/2 MAPKs is required for its modulation of integrin activation. J. Biol. Chem. 278, 52587–52597.

    Article  PubMed  CAS  Google Scholar 

  97. Ramos, J. W., Kojima, T. K., Hughes, P. E., Fenczik, C. A., and Ginsberg, M. H. (1998) The death effector domain of PEA-15 is involved in its regulation of integrin activation. J. Biol. Chem. 273, 33897–33900.

    Article  PubMed  CAS  Google Scholar 

  98. Goult, B. T., Bouaouina, M., Harburger, D. S., Bate, N., Patel, B., Anthis, N. J., Campbell, I. D., Calderwood, D. A., Barsukov, I. L., Roberts, G. C., and Critchley, D. R. (2009) The structure of the N-terminus of kindlin-1: A domain important for αIIbβ3 integrin activation. J. Mol. Biol. 394, 944–956.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Calderwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bouaouina, M., Harburger, D.S., Calderwood, D.A. (2011). Talin and Signaling Through Integrins. In: Shimaoka, M. (eds) Integrin and Cell Adhesion Molecules. Methods in Molecular Biology, vol 757. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-166-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-166-6_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-165-9

  • Online ISBN: 978-1-61779-166-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics