Skip to main content

Polyamine Transport Systems in Mammalian Cells and Tissues

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 720))

Abstract

Polyamine transport plays an important role in the homeostatic regulation of the polyamine levels. In animals, dietary polyamines are absorbed efficiently in the intestinal tract. In the colon, luminal bacterial derived polyamines are important contributors to cellular polyamine contents. Polyamine transport involves unique uptake and export mechanisms. The amino acid transporter SLC3A2 acts as a polyamine exporter in colon cancer-derived cells. Polyamine uptake is mediated by caveolin-1 dependent ­endocytosis. The K-RAS oncogene signals increased polyamine uptake and decreased polyamine export. Here, we describe the methods of polyamine transport analysis in the colon and the small intestine using ­membrane vesicles, culture cells, and mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Larqué E, Sabater-Molina M, Zamora S (2007) Biological significance of dietary polyamines. Nutrition 23:87–95

    Article  PubMed  Google Scholar 

  2. Bardocz S, White A, Grant G, Brown DS, Duguid TG, Pusztai A (1996) Uptake and bioavailability of dietary polyamines. Biochem Soc Trans 24:226S

    PubMed  CAS  Google Scholar 

  3. Nakaike S, Kashiwagi K, Terao K, Iio K, Igarashi K (1988) Combined use of alpha-difluoromethylornithine and an inhibitor of S-adenosylmethionine decarboxylase in mice bearing P388 leukemia or Lewis lung carcinoma. Jpn J Cancer Res 79:501–508

    Article  PubMed  CAS  Google Scholar 

  4. Wery I, Kaouass M, Deloyer P, Buts JP, Barbason H, Dandrifosse G (1996) Exogenous spermine induces maturation of the liver in suckling rats. Hepatology 24:1206–1210

    PubMed  CAS  Google Scholar 

  5. Hessels J, Kingma AW, Ferwerda H, Keij J, van den Berg GA, Muskiet FA (1989) Microbial flora in the gastrointestinal tract abolishes cytostatic effects of alpha-­difluoromethylornithine in vivo. Int J Cancer 43:1155–1164

    Article  PubMed  CAS  Google Scholar 

  6. Quemener V, Moulinoux JP, Havouis R, Seiler N (1992) Polyamine deprivation enhances antitumoral efficacy of chemotherapy. Anticancer Res 12:1447–1453

    PubMed  CAS  Google Scholar 

  7. Uemura T, Yerushalmi HF, Tsaprailis G, Stringer DE, Pastorian KE, Hawel L, Byus CV, Gerner EW (2008) Identification and characterization of a diamine exporter in colon epithelial cells. J Biol Chem 283:26428–26435

    Article  PubMed  CAS  Google Scholar 

  8. Belting M, Mani K, Jonsson M, Cheng F, Sandgren S, Jonsson S, Ding K, Delcros JG, Fransson LA (2003) Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide. J Biol Chem 278:47181–47189

    Article  PubMed  CAS  Google Scholar 

  9. Roy UK, Rial NS, Kachel KL, Gerner EW (2008) Activated K-RAS increases polyamine uptake in human colon cancer cells through modulation of caveolar endocytosis. Mol Carcinog 47:538–553

    Article  PubMed  CAS  Google Scholar 

  10. Igarashi K, Ito K, Kashiwagi K (2001) Polyamine uptake systems in Escherichia coli. Res Microbiol 152:271–278

    Article  PubMed  CAS  Google Scholar 

  11. Uemura T, Kashiwagi K, Igarashi K (2005) Uptake of putrescine and spermidine by Gap1p on the plasma membrane in Saccharomyces cerevisiae. Biochem Biophys Res Commun 328:1028–1033

    Article  PubMed  CAS  Google Scholar 

  12. Uemura T, Kashiwagi K, Igarashi K (2007) Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J Biol Chem 282:7733–7741

    Article  PubMed  CAS  Google Scholar 

  13. Uemura T, Tachihara K, Tomitori H, Kashiwagi K, Igarashi K (2005) Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J Biol Chem 280:9646–9652

    Article  PubMed  CAS  Google Scholar 

  14. Uemura T, Tomonari Y, Kashiwagi K, Igarashi K (2004) Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae. Biochem Biophys Res Commun 315:1082–1087

    Article  PubMed  CAS  Google Scholar 

  15. Schaub T, Ishikawa T, Keppler D (1991) ATP-dependent leukotriene export from mastocytoma cells. FEBS Lett 279:83–86

    Article  PubMed  CAS  Google Scholar 

  16. Saxena M, Henderson GB (1995) ATP-dependent efflux of 2, 4-dinitrophenyl-S-glutathione. Properties of two distinct transport systems in inside-out vesicles from L1210 cells and a variant subline with altered efflux of methotrexate and cholate. J Biol Chem 270:5312–5319

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Kirk E. Pastorian, Dr. Leo Hawel III, and Dr. Craig V. Byus, Department of Biomedical Sciences, University of California, Riverside, for development of the putrescine tolerant CHO cells. We thank Dr. B. Sloane and Dr. D. Cadavello-Medved, Department of Pharmacology, Barbara Karmanos Cancer Institute, Wayne State University, School of Medicine, for providing HCT116/Mock and HCT116/Cav-1 A. S. cells. This work was supported, in whole or in part, by National Institutes of Health Grants CA123065, and CA095060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene W. Gerner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Uemura, T., Gerner, E.W. (2011). Polyamine Transport Systems in Mammalian Cells and Tissues. In: Pegg, A., Casero, Jr., R. (eds) Polyamines. Methods in Molecular Biology, vol 720. Humana Press. https://doi.org/10.1007/978-1-61779-034-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-034-8_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-033-1

  • Online ISBN: 978-1-61779-034-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics