Skip to main content

Processing ChIP-Chip Data: From the Scanner to the Browser

  • Protocol
  • First Online:
Bioinformatics for Omics Data

Part of the book series: Methods in Molecular Biology ((MIMB,volume 719))

Abstract

High-density tiling microarrays are increasingly used in combination with chromatin immunoprecipitation (ChIP) assays to delineate the regulation of gene expression. Besides the technical challenges inherent to such complex biological assays, a critical, often daunting issue is the correct interpretation of the sheer amount of raw data generated by utilizing computational methods. Here, we go through the main steps of this intricate process, including optimized chromatin immunoprecipitation on chip (ChIP-chip) data normalization, peak detection, as well as quality control reports. We also describe convenient standalone software suites, including our own, CoCAS, which works on the latest generation of Agilent high-density arrays, allows dye-swap, replicate correlation, and easy connection with genome browsers for results interpretation, or with, e.g., other peak detection algorithms. Overall, the guidelines described herein provide an effective introduction to ChIP-chip technology and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smeenk, L., van Heeringen, S. J., Koeppel, M., van Driel, M. A., Bartels, S. J., Akkers, R. C., Denissov, S., Stunnenberg, H. G. and Lohrum, M. (2008) Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res 36, 3639–54.

    Article  PubMed  CAS  Google Scholar 

  2. Koch, F., Jourquin, F., Ferrier, P. and Andrau, J. C. (2008) Genome-wide RNA polymerase II: not genes only! Trends Biochem Sci 33, 265–73.

    Article  PubMed  CAS  Google Scholar 

  3. Buratowski, S. (2003) The CTD code. Nat Struct Biol 10, 679–80.

    Article  PubMed  CAS  Google Scholar 

  4. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693–705.

    Article  PubMed  CAS  Google Scholar 

  5. Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T. L., Wilson, C. J., Bell, S. P. and Young, R. A. (2000) Genome-wide location and function of DNA binding proteins. Science 290, 2306–9.

    Article  PubMed  CAS  Google Scholar 

  6. Barski, A. and Zhao, K. (2009) Genomic location analysis by ChIP-Seq. J Cell Biochem 107, 11–8.

    Article  PubMed  CAS  Google Scholar 

  7. Gilmour, D. S. and Lis, J. T. (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5, 2009–18.

    PubMed  CAS  Google Scholar 

  8. Defeo-Jones, D., Huang, P. S., Jones, R. E., Haskell, K. M., Vuocolo, G. A., Hanobik, M. G., Huber, H. E. and Oliff, A. (1991) Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 352, 251–4.

    Article  PubMed  CAS  Google Scholar 

  9. Siegel, J. N., Egerton, M., Phillips, A. F. and Samelson, L. E. (1991) Multiple signal transduction pathways activated through the T cell receptor for antigen. Semin Immunol 3, 325–34.

    PubMed  CAS  Google Scholar 

  10. Darnell, J. E., Jr., Kerr, I. M. and Stark, G. R. (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–21.

    Article  PubMed  CAS  Google Scholar 

  11. Hanekom, C., Nel, A., Gittinger, C., Rheeder, A. and Landreth, G. (1989) Complexing of the CD-3 subunit by a monoclonal antibody activates a microtubule-associated protein 2 (MAP-2) serine kinase in Jurkat cells. Biochem J 262, 449–56.

    PubMed  CAS  Google Scholar 

  12. Berridge, M. J. and Irvine, R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–21.

    Article  PubMed  CAS  Google Scholar 

  13. Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S., Qu, C., Ching, K. A., Wang, W., Weng, Z., Green, R. D., Crawford, G. E. and Ren, B. (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39, 311–8.

    Article  PubMed  CAS  Google Scholar 

  14. Parzen, E. (1962) On estimation of a probability density function and mode. Ann Math Stat 33, 1065–76.

    Article  Google Scholar 

  15. Martin-Magniette, M. L., Mary-Huard, T., Berard, C. and Robin, S. (2008) ChIPmix: mixture model of regressions for two-color ChIP-chip analysis. Bioinformatics 24, i181–6.

    Article  PubMed  Google Scholar 

  16. Smyth, G. K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, Iss 1 Article 3. http://www.bepress.com/sagmb/vol3/iss1/art3/

    Google Scholar 

  17. Weng, L., Dai, H., Zhan, Y., He, Y., Stepaniants, S. B. and Bassett, D. E. (2006) Rosetta error model for gene expression analysis. Bioinformatics 22, 1111–21.

    Article  PubMed  CAS  Google Scholar 

  18. Zheng, M., Barrera, L. O., Ren, B. and Wu, Y. N. (2007) ChIP-chip: data, model, and analysis. Biometrics 63, 787–96.

    Article  PubMed  CAS  Google Scholar 

  19. Toedling, J., Skylar, O., Krueger, T., Fischer, J. J., Sperling, S. and Huber, W. (2007) Ringo – an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinformatics 8, 221.

    Article  PubMed  Google Scholar 

  20. Benoukraf, T., Cauchy, P., Fenouil, R., Jeanniard, A., Koch, F., Jaeger, S., Thieffry, D., Imbert, J., Andrau, J. C., Spicuglia, S. and Ferrier, P. (2009) CoCAS: a ChIP-on-chip analysis suite. Bioinformatics 25, 954–5.

    Article  PubMed  CAS  Google Scholar 

  21. Ji, H., Vokes, S. A. and Wong, W. H. (2006) A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Res 34, e146.

    Article  PubMed  Google Scholar 

  22. Farnham, P. J. (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10, 605–16.

    Article  PubMed  CAS  Google Scholar 

  23. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–10.

    Article  PubMed  CAS  Google Scholar 

  24. Kesmir, C., van Noort, V., de Boer, R. J. and Hogeweg, P. (2003) Bioinformatic analysis of functional differences between the immunoproteasome and the constitutive proteasome. Immunogenetics 55, 437–49.

    Article  PubMed  CAS  Google Scholar 

  25. Bryne, J. C., Valen, E., Tang, M. H., Marstrand, T., Winther, O., da Piedade, I., Krogh, A., Lenhard, B. and Sandelin, A. (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 36, D102–6.

    Article  PubMed  CAS  Google Scholar 

  26. Bailey, T. L. and Elkan, C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28–36.

    PubMed  CAS  Google Scholar 

  27. Bailey, T. L. and Gribskov, M. (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14, 48–54.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, X., Brutlag, D. L. and Liu, J. S. (2001) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 6, 127–38.

    Google Scholar 

  29. Toedling, J. and Huber, W. (2008) Analyzing ChIP-chip data using bioconductor. PLoS Comput Biol 4, e1000227.

    Article  PubMed  Google Scholar 

  30. Johnson, D. S., Li, W., Gordon, D. B., Bhattacharjee, A., Curry, B., Ghosh, J., Brizuela, L., Carroll, J. S., Brown, M., Flicek, P., Koch, C. M., Dunham, I., Bieda, M., Xu, X., Farnham, P. J., Kapranov, P., Nix, D. A., Gingeras, T. R., Zhang, X., Holster, H., Jiang, N., Green, R. D., Song, J. S., McCuine, S. A., Anton, E., Nguyen, L., Trinklein, N. D., Ye, Z., Ching, K., Hawkins, D., Ren, B., Scacheri, P. C., Rozowsky, J., Karpikov, A., Euskirchen, G., Weissman, S., Gerstein, M., Snyder, M., Yang, A., Moqtaderi, Z., Hirsch, H., Shulha, H. P., Fu, Y., Weng, Z., Struhl, K., Myers, R. M., Lieb, J. D. and Liu, X. S. (2008) Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Res 18, 393–403.

    Article  PubMed  Google Scholar 

  31. Bieda, M., Xu, X., Singer, M. A., Green, R. and Farnham, P. J. (2006) Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res 16, 595–605.

    Article  PubMed  CAS  Google Scholar 

  32. Shin, H., Liu, T., Manrai, A. K. and Liu, X. S. (2009) CEAS: cis-regulatory element annotation system. Bioinformatics 25, 2605–6.

    Article  PubMed  CAS  Google Scholar 

  33. Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. and Noble, W. S. (2007) Quantifying similarity between motifs. Genome Biol 8, R24.

    Article  PubMed  Google Scholar 

  34. Boden, M. and Bailey, T. L. (2008) Associating transcription factor-binding site motifs with target GO terms and target genes. Nucleic Acids Res 36, 4108–17.

    Article  PubMed  CAS  Google Scholar 

  35. Ovcharenko, I., Nobrega, M. A., Loots, G. G. and Stubbs, L. (2004) ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res 32, W280–6.

    Article  PubMed  CAS  Google Scholar 

  36. Li, W., Meyer, C. A. and Liu, X. S. (2005) A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics 21 Suppl 1, i274–82.

    Article  PubMed  CAS  Google Scholar 

  37. Zhou, Q. and Wong, W. H. (2004) CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling. Proc Natl Acad Sci USA 101, 12114–9.

    Article  PubMed  CAS  Google Scholar 

  38. Gibbons, F. D., Proft, M., Struhl, K. and Roth, F. P. (2005) Chipper: discovering transcription-factor targets from chromatin immunoprecipitation microarrays using variance stabilization. Genome Biol 6, R96.

    Article  PubMed  Google Scholar 

  39. Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A. and Vingron, M. (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18 Suppl 1, S96–104.

    PubMed  Google Scholar 

  40. Eden, E., Lipson, D., Yogev, S. and Yakhini, Z. (2007) Discovering motifs in ranked lists of DNA sequences. PLoS Comput Biol 3, e39.

    Article  PubMed  Google Scholar 

  41. Scacheri, P. C., Crawford, G. E. and Davis, S. (2006) Statistics for ChIP-chip and DNase hypersensitivity experiments on NimbleGen arrays. Methods Enzymol 411, 270–82.

    Article  PubMed  CAS  Google Scholar 

  42. Buck, M. J., Nobel, A. B. and Lieb, J. D. (2005) ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol 6, R97.

    Article  PubMed  Google Scholar 

  43. Ho, I. C., Bhat, N. K., Gottschalk, L. R., Lindsten, T., Thompson, C. B., Papas, T. S. and Leiden, J. M. (1990) Sequence-specific binding of human Ets-1 to the T cell receptor alpha gene enhancer. Science 250, 814–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the Ferrier laboratory is supported by Inserm, CNRS, the Agence Nationale de la Recherche (ANR), Institut National du Cancer (INCa), Association pour la Recherche sur le Cancer (ARC), Fondation Princesse Grace de Monaco, Fondation de France, Association Laurette Fugain, and Commission of the European Communities. PC and TB were supported by fellowships from, respectively, INCa and Marseille-Nice Genopole and ANR 06-BYOS-0006; both are now fellows from the Fondation de la Recherche Médicale (FRM). We also extend our thanks to Jean-Christophe Andrau, Salvatore Spicuglia, Frederic Koch, and Frederic Rosa for their comments, as well as Virginia Cauchy for her corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Ferrier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cauchy, P., Benoukraf, T., Ferrier, P. (2011). Processing ChIP-Chip Data: From the Scanner to the Browser. In: Mayer, B. (eds) Bioinformatics for Omics Data. Methods in Molecular Biology, vol 719. Humana Press. https://doi.org/10.1007/978-1-61779-027-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-027-0_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-026-3

  • Online ISBN: 978-1-61779-027-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics