Skip to main content

MR-Guided Focused Ultrasound for Brain Ablation and Blood–Brain Barrier Disruption

  • Protocol
  • First Online:
Magnetic Resonance Neuroimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 711))

Abstract

MR-guided transcranial focused ultrasound (FUS) has been demonstrated as a non-invasive tool for treating various brain diseases. First, FUS can thermally ablate brain tissues under real-time MR thermometry monitoring. The MRI guidance significantly improves the precision of the thermal dose deposition. Second, in conjunction with microbubble contrast agents, FUS can reversibly disrupt the blood–brain barrier for delivery of macromolecular drugs to the brain parenchyma. This offers huge potential for treating brain diseases with a much higher local drug concentration than other drug delivery methods. In this chapter, a detailed protocol of MR-guided focused ultrasound for brain thermal ablation and BBB disruption in an animal research setting is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lynn, J. G., Zwemer, R. L., Chick, A. J., Miller, A. G. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol 1942;26:179–193.

    Article  PubMed  CAS  Google Scholar 

  2. Lynn, J. G., Putnam, T. J. Histological and cerebral lesions produced by focused ultrasound. Am J Pathol 1944;20:637–649.

    PubMed  CAS  Google Scholar 

  3. Fry, W. J., Mosberg, W. H., Jr, Barnard, J. W., Fry, F. J. Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 1954;11:471–478.

    Article  PubMed  CAS  Google Scholar 

  4. Fry, F. J. Precision high intensity focusing ultrasonic machines for surgery. Am J Phys Med 1958;37:152–156.

    PubMed  CAS  Google Scholar 

  5. Cosman, B. J., Hueter, T. F. Instrumentation for ultrasonic neurosurgery. Electronics 1959;5:53–57.

    Google Scholar 

  6. Fry, W. J., Meyers, R. Ultrasonic method of modifying brain structures. Confin Neurol 1962;22:315–327.

    Article  PubMed  CAS  Google Scholar 

  7. Fry, F. J., Goss, S. A. Further studies of the transkull transmission of an intense focused ultrasonic beam: Lesion production at 500 kHz. Ultrasound Med Biol 1980;6:33–38.

    Article  PubMed  CAS  Google Scholar 

  8. Cline, H. E., Schenck, J. F., Watkins, R. D., Hynynen, K., Jolesz, F. A. Magnetic resonance-guided thermal surgery. Magn Reson Med 1993;31:628–636.

    Article  Google Scholar 

  9. De Poorter, J., De Wagter, C., De Deene, Y., Thomsen, C., Stahlberg, F., Achten, E. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: In vivo results in human muscle. Magn Reson Med 1995;33:74–81.

    Article  PubMed  Google Scholar 

  10. Ishihara, Y., Calderon, A., Watanabe, H., Okamoto, K., Suzuki, Y., Kuroda, K., Suzuki, Y. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995;34:814–823.

    Article  PubMed  CAS  Google Scholar 

  11. Hynynen, K., Clement, G. T., McDannold, N., Vykhodtseva, N., King, R., White, P. J., Vitek, S., Jolesz, F. A. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: A preliminary rabbit study with ex vivo human skulls. Magn Reson Med 2004;52:100–107.

    Article  PubMed  Google Scholar 

  12. Abbott, N. J., Romero, I. A. Transporting therapeutics across the blood-brain barrier. Mol Med Today 1996;2:106–113.

    Article  PubMed  CAS  Google Scholar 

  13. Kroll, R. A., Neuwelt, E. A. Outwitting the blood-brain barrier for therapeutic purposes: Osmotic opening and other means. Neurosurgery 1998;42:1083–1099.

    Article  PubMed  CAS  Google Scholar 

  14. Pardridge, W. M. Drug and gene delivery to the brain: The vascular route. Neuron 2002;36:555–558.

    Article  PubMed  CAS  Google Scholar 

  15. Hynynen, K., McDannold, N., Vykhodtseva, N., Jolesz, F. A. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001;220:640–646.

    Article  PubMed  CAS  Google Scholar 

  16. Chopra, R., Curiel, L., Staruch, R., Morrison, L., Hynynen, K. An MRI-compatible system for focused ultrasound experiments in small animal models. Med Phys 2009;36:1867–1874.

    Article  PubMed  Google Scholar 

  17. Sheikov, N., McDannold, N., Vykhodtseva, N., Jolesz, F., Hynynen, K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 2004;30:979–989.

    Article  PubMed  Google Scholar 

  18. Hynynen, K., McDannold, N., Sheikov, N. A., Jolesz, F. A., Vykhodtseva, N. Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 2005;24:12–20.

    Article  PubMed  Google Scholar 

  19. Hynynen, K., McDannold, N., Vykhodtseva, N., Raymond, S., Weissleder, R., Jolesz, F. A., Sheikov, N. Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: A method for molecular imaging and targeted drug delivery. J Neurosurg 2006;105:445–454.

    Article  PubMed  CAS  Google Scholar 

  20. Sheikov, N., McDannold, N., Jolesz, F., Zhang, Y. Z., Tam, K., Hynynen, K. Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier. Ultrasound Med Biol 2006;32:1399–1409.

    Article  PubMed  Google Scholar 

  21. Kinoshita, M., McDannold, N., Jolesz, F. A., Hynynen, K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci USA 2006;103:11719–11723.

    Article  PubMed  CAS  Google Scholar 

  22. Treat, L. H., McDannold, N., Vykhodtseva, N., Zhang, Y., Tam, K., Hynynen, K. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 2007;121:901–907.

    Article  PubMed  CAS  Google Scholar 

  23. Choi, J. J., Pernot, M., Small, S. A., Konofagou, E. E. Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med Biol 2007;33:95–104.

    Article  PubMed  Google Scholar 

  24. McDannold, N., Vykhodtseva, N., Hynynen, K. Use of ultrasound pulses combined with definity for targeted blood-brain barrier disruption: A feasibility study. Ultrasound Med Biol 2007;33:584–590.

    Article  PubMed  Google Scholar 

  25. McDannold, N., Vykhodtseva, N., Hynynen, K. Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol 2008;34:834–840.

    Article  PubMed  Google Scholar 

  26. McDannold, N., Vykhodtseva, N., Hynynen, K. Effects of acoustic parameters and ultrasound contrast agent dose on focused ultrasound induced blood-brain barrier disruption. Ultrasound Med Biol 2008;34:930–937.

    Article  PubMed  Google Scholar 

  27. Sheikov, N., McDannold, N., Sharma, S., Hynynen, K. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 2008;34:1093–1104.

    Article  PubMed  Google Scholar 

  28. Yang, F. Y., Fu, W. M., Yang, R. S., Liou, H. C., Kang, K. H., Lin, W. L. Quantitative evaluation of the use of microbubbles with transcranial focused ultrasound on blood-brain-barrier disruption. Ultrasound Med Biol 2007;33:1421–1427.

    Article  PubMed  Google Scholar 

  29. Liu, H. L., Wai, Y. Y., Chen, W. S., Chen, J. C., Hsu, P. H., Wu, X. Y., Huang, W. C., Yen, T. C., Wang, J. J. Hemorrhage detection during focused-ultrasound induced blood-brain barrier opening by using susceptibility-weighted magnetic resonance imaging. Ultrasound Med Biol 2008;34:598–606.

    Article  PubMed  Google Scholar 

  30. Xie, F., Boska, M. D., Lof, J., Uberti, M. G., Tsutsui, J. M., Porter, T. R. Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Ultrasound Med Biol 2008;34:2028–2034.

    Article  PubMed  Google Scholar 

  31. Hynynen, K. The threshold for thermally significant cavitation in dog’s thigh muscle in vivo. Ultrasound Med Biol 1991;17:157–169.

    Article  PubMed  CAS  Google Scholar 

  32. Graham, S. J., Chen, L., Leitch, M., Peters, R. D., Bronskill, M. J., Foster, F. S., Henkelman, R. M., Plewes, D. B. Magn Reson Med 1999;41:321–328.

    Article  PubMed  CAS  Google Scholar 

  33. Chung, A. H., Jolesz, F. A., Hynynen, K. Thermal dosimetry of a focused ultrasound beam in vivo by magnetic resonance imaging. Med Phys 1999;26:2017–2026.

    Article  PubMed  CAS  Google Scholar 

  34. Bernstein, M. A., King, K. F., Zhou, X. J. Handbook of MRI Pulse Sequence. Burlington, VT: Elsevier Academic Press; 2004, 560–562.

    Google Scholar 

  35. McDannold, N., Vykhodtseva, N., Hynynen, K. Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits. Radiology 2006;241:95–106.

    Article  PubMed  Google Scholar 

  36. Hynynen, K., McDannold, N., Mulkern, R. V., Jolesz, F. A. Temperature monitoring in fat with MRI. Magn Reson Med 2000;43:901–904.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Sources of Support: NIH (grant numbers EB00705 and EB003268) and the Terry Fox Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kullervo Hynynen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huang, Y., Hynynen, K. (2011). MR-Guided Focused Ultrasound for Brain Ablation and Blood–Brain Barrier Disruption. In: Modo, M., Bulte, J. (eds) Magnetic Resonance Neuroimaging. Methods in Molecular Biology, vol 711. Humana Press. https://doi.org/10.1007/978-1-61737-992-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-992-5_30

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-991-8

  • Online ISBN: 978-1-61737-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics