Skip to main content

Micro-structured Materials and Mechanical Cues in 3D Collagen Gels

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 695))

Abstract

Collagen gels provide a versatile and widely used substrate for three-dimensional (3D) cell culture. Here we describe how cell-seeded Type-I collagen gels can be adapted to provide powerful 3D models to support a wide range of research applications where cell/substrate alignment, density, stiffness/compliance, and strain are critical factors. In their fully hydrated form, rectangular collagen gels can be tethered such that endogenous forces generated as resident cells attach to and remodel the fibrillar collagen network can align the substrate in a controllable, predictable, and quantifiable manner. By removing water from collagen gels (plastic compression), their density increases towards that of body tissues, facilitating the engineering of a range of biomimetic constructs with controllable mechanical properties. This dense collagen can be used in combination with other components to achieve a range of functional properties from controlled perfusion, or tensile/compressive strength to new micro-structures. Detailed methodology is provided for the assembly of a range of 3D collagen materials including tethered aligned hydrogels and plastic compressed constructs. A range of techniques for analysing cell behaviour within these models, including microscopy and molecular analyses are described. These systems therefore provide a highly controllable mechanical and chemical micro-environment for investigating a wide range of cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eastwood, M., Mudera, V. C., McGrouther, D. A., and Brown, R. A. (1998) Effect of precise mechanical loading on fibroblast populated collagen lattices: morphological changes. Cell Motil. Cytoskeleton 40, 13–21.

    Article  PubMed  CAS  Google Scholar 

  2. Eastwood, M., McGrouther, D. A., and Brown, R. A. (1994) A culture force monitor for measurement of contraction forces generated in human dermal fibroblast cultures: evidence for cell-matrix mechanical signalling. Biochim. Biophys. Acta 1201, 186–192.

    Article  PubMed  CAS  Google Scholar 

  3. Brown, R. A., Prajapati, R., McGrouther, D. A., Yannas, I. V., and Eastwood, M. (1998) Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J. Cell. Physiol. 175, 323–332.

    Article  PubMed  CAS  Google Scholar 

  4. Brown, R. A., Wiseman, M., Chuo, C.-B., Cheema, U., Nazhat, S. N. (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv. Funct. Mater. 15, 1762–1770.

    Article  CAS  Google Scholar 

  5. Brown, R. A., Sethi, K. K., Gwanmesia, I., Raemdonck, D., Eastwood, M., and Mudera, V. (2002) Enhanced fibroblast contraction of 3D collagen lattices and integrin expression by TGF-beta1 and -beta3: mechanoregulatory growth factors? Exp. Cell Res. 274, 310–322.

    Article  PubMed  CAS  Google Scholar 

  6. Cheema, U., Yang, S. Y., Mudera, V., Goldspink, G. G., and Brown, R. A. (2003) 3-D in vitro model of early skeletal muscle development. Cell Motil. Cytoskeleton 54, 226–236.

    Article  PubMed  CAS  Google Scholar 

  7. Marenzana, M., Pickard, D., MacRobert, A. J., and Brown, R. A. (2002) Optical measurement of three-dimensional collagen gel constructs by elastic scattering spectroscopy. Tissue Eng. 8, 409–418.

    Article  PubMed  CAS  Google Scholar 

  8. Phillips, J. B., Bunting, S. C., Hall, S. M., and Brown, R. A. (2005) Neural tissue engineering: a self-organizing collagen guidance conduit. Tissue Eng. 11, 1611–1617.

    Article  PubMed  CAS  Google Scholar 

  9. Porter, R. A., Brown, R. A., Eastwood, M., Occleston, N. L., and Khaw, P. T. (1998) Ultrastructural changes during contraction of collagen lattices by ocular fibroblasts. Wound Repair Regen. 6, 157–166.

    Article  PubMed  CAS  Google Scholar 

  10. Phillips, J. B., Bunting, S. C. J., Hall, S. M., and Brown, R. A. (2005) Neural tissue engineering: a self-organizing collagen guidance conduit. Tissue Eng. 11, 1612–1618.

    Google Scholar 

  11. East, E., Golding, J., and Phillips, J. B. (2009) A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. J. Tissue Eng. Regen. Med. 3(8), 634–646.

    Article  PubMed  CAS  Google Scholar 

  12. East, E., Golding, J., and Phillips, J. B. (2007) Increased GFAP immunoreactivity by astrocytes in response to contact with dorsal root ganglia cells in a 3D culture model. Neuron Glia Biol. 3, S119.

    Google Scholar 

  13. East, E. and Phillips, J. B. (2008) Tissue Engineered Cell Culture Models for Nervous System Research. In: Tissue Engineering Research Trends (Greco, G. N., Ed.), Nova Science Publishers, New York.

    Google Scholar 

  14. Hadjipanayi, E., Mudera, V., and Brown, RA. (2009) Guiding cell migration in 3D: A collagen matrix with graded directional stiffness. Cell Motil. Cytoskeleton 66(3), 121–128.

    Article  PubMed  CAS  Google Scholar 

  15. Mudera, V. C., Pleass, R., Eastwood, M., Tarnuzzer, R., Schultz, G., Khaw, P., McGrouther, D. A., and Brown, R. A. (2000) Molecular responses of human dermal fibroblasts to dual cues: contact guidance and mechanical load. Cell Motil. Cytoskeleton 45, 1–9.

    Article  PubMed  CAS  Google Scholar 

  16. Cheema, U., Brown, R. A., Alp, B., and MacRobert, A. J. (2008) Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model. Cell. Mol. Life Sci. 65, 177–186.

    Article  PubMed  CAS  Google Scholar 

  17. Abou Neel, E. A., Cheema, U., Knowles, J. C., Brown, R. A., and Nazhat, S. N. (2006) Use of multiple unconfined compression for fine control of collagen gel scaffold density and mechanical properties. Soft Matter 2, 986–992.

    Article  CAS  Google Scholar 

  18. Nazhat, S. N., Neel, E. A., Kidane, A., Ahmed, I., Hope, C., Kershaw, M., Lee, P. D., Stride, E., Saffari, N., Knowles, J. C., and Brown, R. A. (2007) Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 8, 543–551.

    Article  PubMed  CAS  Google Scholar 

  19. Ananta, M., Aulin, C. E., Hilborn, J., Aibibu, D., Houis, S., Brown, R. A., and Mudera, V. (2009) A poly(lactic acid-co-caprolactone)-collagen hybrid for tissue engineering applications. Tissue Eng. Part A 15, 1667–1675.

    Article  PubMed  CAS  Google Scholar 

  20. East, E., Blum de Oliveira, D., Golding, J. P. and Philips, J. B. (2010) Alignment of Astrocytes Increases Neuronal Growth in Three-Dimensional Collagen Gels and Is Maintained Following Plastic Compression to Form a Spinal Cord Repair Conduit Tissue Engineering Part A. doi:10.1089/ten.tea.2010.0017

    Google Scholar 

  21. Buxton, P. G., Bitar, M., Gellynck, K., Parkar, M., Brown, R. A., Young, A. M., Knowles, J. C., and Nazhat, S. N. (2008) Dense collagen matrix accelerates osteogenic differentiation and rescues the apoptotic response to MMP inhibition. Bone 43, 377–385.

    Article  PubMed  CAS  Google Scholar 

  22. Cheema, U., Chuo, C.-B., Sarathchandra, P., Nazhat, S. N., and Brown, R. A. (2007) Engineering functional collagen scaffolds: cyclical loading increases material strength and fibril aggregation. Adv. Funct. Mat. 17, 2426–2431.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work supported in part (RAB) by grants from BBSRC and TSB-EPSRC and (JBP) the Wellcome Trust. The authors would like to thank Emma East, Daniela Blum de Oliveira, Nelomi Anandagouda, and Tijna Alekseeva for contributing data used in figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Phillips, J.B., Brown, R. (2011). Micro-structured Materials and Mechanical Cues in 3D Collagen Gels. In: Haycock, J. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 695. Humana Press. https://doi.org/10.1007/978-1-60761-984-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-984-0_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-983-3

  • Online ISBN: 978-1-60761-984-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics