Skip to main content

Some Trends in Chem(o)informatics

  • Protocol
  • First Online:
Chemoinformatics and Computational Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 672))

Abstract

This introductory chapter gives a brief overview of the history of cheminformatics, and then summarizes some recent trends in computing, cultures, open systems, chemical structure representation, docking, de novo design, fragment-based drug design, molecular similarity, quantitative structure–activity relationships (QSAR), metabolite prediction, the use of phamacophores in drug discovery, data reduction and visualization, and text mining. The aim is to set the scene for the more detailed exposition of these topics in the later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warr, W. A. Cheminformatics education. http://www.qsarworld.com/cheminformatics-education.php (accessed October 2, 2009).

  2. Willett, P. (2008) A bibliometric analysis of the literature of chemoinformatics. Aslib. Proc. 60, 4–17.

    Article  Google Scholar 

  3. Cheminformatics or chemoinformatics? http://www.molinspiration.com/chemoinformatics.html (accessed October 2, 2009).

  4. Warr, W. A. (1999) Balancing the needs of the recruiters and the aims of the educators, in Book of Abstracts, 218th ACS National Meeting, New Orleans, Aug. 22–26.

    Google Scholar 

  5. Warr, W. A. Extract from 218th ACS National Meeting and Exposition, New Orleans, Louisiana, August 1999 [cheminformatics]. http://www.warr.com/warrzone2000.html (accessed October 2, 2009).

  6. Willett, P. (2007) A bibliometric analysis of the Journal of Molecular Graphics and Modelling. J. Mol. Graphics Modell. 26, 602–606.

    Article  CAS  Google Scholar 

  7. Leach, A. R., and Gillet, V. J. (2003) An Introduction to Chemoinformatics. Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  8. Gasteiger, J., and Engel, T., (Eds.) (2003) Chemoinformatics: A Textbook, Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  9. Bajorath, J., (Ed.) (2004) Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery, Humana Press, Totowa, NJ.

    Google Scholar 

  10. Oprea, T. I., (Ed.) (2005) Chemoinformatics in Drug Discovery, Wiley, New York, NY.

    Google Scholar 

  11. Schneider, G., and Baringhaus, K.-H., (Eds.) (2008) Molecular Design: Concepts and Applications, Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  12. Chen, W. L. (2006) Chemoinformatics: past, present, and future. J. Chem. Inf. Model. 46, 2230–2255.

    Article  PubMed  CAS  Google Scholar 

  13. Engel, T. (2006) Basic overview of chemoinformatics. J. Chem. Inf. Model. 46, 2267–2277.

    Article  PubMed  CAS  Google Scholar 

  14. Willett, P. (2008) From chemical documentation to chemoinformatics: 50 years of chemical information science. J. Inf. Sci. 34, 477–499.

    Article  Google Scholar 

  15. Willett, P. (2003) A history of chemoinformatics in Handbook of Chemoinformatics: From Data to Knowledge Wiley-VCH, Weinheim, Germany, Vol. 1, pp 6–20.

    Google Scholar 

  16. Bishop, N., Gillet, V. J., Holliday, J. D., and Willett, P. (2003) Chemoinformatics research at the University of Sheffield: a history and citation analysis. J. Inf. Sci. 29, 249–267.

    Article  Google Scholar 

  17. Ash, J. E., Warr, W. A., and Willett, P., (Eds.) (1991) Chemical structure systems: computational techniques for representation, searching, and processing of structural information, Ellis Horwood, Chichester, UK.

    Google Scholar 

  18. Paris, G. C. (1997) Chemical structure handling by computer. Ann. Rev. Inf. Sci. Technol. 32, 271–337.

    Google Scholar 

  19. Paris, G. C. (1998) Structure databases, in Encyclopedia of Computational Chemistry (Schleyer, P. v. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F., III, and Schreiner, P. R., Eds.), Wiley, Chichester, UK, Vol. 4, pp 2771–2785.

    Google Scholar 

  20. Paris, G. C. (2003) Databases of chemical structures, in Handbook of Cheminformatics: From Data to Knowledge (Gasteiger, J., Ed.), Wiley-VCH, Weinheim, Germany, Vol. 2, pp 523–555.

    Google Scholar 

  21. Warr, W. A., and Suhr, C. (1992) Chemical information management, Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  22. Ott, M., A. (2004) Cheminformatics and organic chemistry. Computer-assisted synthetic analysis, in Cheminformatics Developments (Noordik, J., H., Ed.), IOS Press, Amsterdam, The Netherlands, pp 83–109.

    Google Scholar 

  23. Pearlman, R. S. (1987) Rapid generation of high quality approximate 3D molecular structures. Chem. Des. Autom. News 2, 5–7.

    Google Scholar 

  24. Gasteiger, J., Rudolph, C., and Sadowski, J. (1990) Automatic generation of 3D atomic coordinates for organic molecules. Tetrahedron Comput. Methodol. 3, 537–547.

    Article  CAS  Google Scholar 

  25. Hiller, C., and Gasteiger, J. (1987) An automatic molecule builder, in Software Development in Chemistry 1. Proceedings of the Workshops on the Computer in Chemistry, Hochfilzen/Tirol, November 19–21, 1986 (Gasteiger, J., Ed.), Springer, Berlin, Vol. 1, pp 53–66.

    Google Scholar 

  26. Sadowski, J., Gasteiger, J., and Klebe, G. (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J. Chem. Inf. Comput. Sci. 34, 1000–1008.

    Article  CAS  Google Scholar 

  27. Jakes, S. E., and Willett, P. (1986) Pharmacophoric pattern matching in files of 3-D chemical structures: selection of interatomic distance screens. J. Mol. Graphics 4, 12–20.

    Article  CAS  Google Scholar 

  28. Jakes, S. E., Watts, N., Willett, P., Bawden, D., and Fisher, J. D. (1987) Pharmacophoric pattern matching in files of 3D chemical structures: evaluation of search performance. J. Mol. Graphics 5, 41–48.

    Article  CAS  Google Scholar 

  29. Brint, A. T., and Willett, P. (1987) Pharmacophoric pattern matching in files of 3D chemical structures: comparison of geometric searching algorithms. J. Mol. Graphics 5, 49–56.

    Article  CAS  Google Scholar 

  30. Cringean, J. K., Pepperrell, C. A., Poirrette, A. R., and Willett, P. (1990) Selection of screens for three-dimensional substructure searching. Tetrahedron Comput. Methodol. 3, 37–46.

    Article  CAS  Google Scholar 

  31. Willett, P. (1991) Three-dimensional Chemical Structure Handling, Research Studies Press, Taunton, UK.

    Google Scholar 

  32. Martin, Y. C., and Willett, P., (Eds.) (1998) Designing Bioactive Molecules: Three-Dimensional Techniques and Applications, American Chemical Society, Washington, DC.

    Google Scholar 

  33. Martin, Y. C., Danaher, E. B., May, C. S., and Weininger, D. (1988) MENTHOR, a database system for the storage and retrieval of three-dimensional molecular structures and associated data searchable by substructural, biologic, physical, or geometric properties. J. Comput.-Aided Mol. Des. 2, 15–29.

    Article  PubMed  CAS  Google Scholar 

  34. Van Drie, J. H., Weininger, D., and Martin, Y. C. (1989) ALADDIN: an integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures. J. Comput.-Aided Mol. Des. 3, 225–251.

    Article  PubMed  Google Scholar 

  35. Willett, P., Barnard, J. M., and Downs, G. M. (1998) Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38, 983–996.

    Article  CAS  Google Scholar 

  36. Barnard, J. M. (1991) A comparison of different approaches to Markush structure handling. J. Chem. Inf. Comput. Sci. 31, 64–68.

    Article  PubMed  CAS  Google Scholar 

  37. Benichou, P., Klimczak, C., and Borne, P. (1997) Handling genericity in chemical structures using the Markush DARC software. J. Chem. Inf. Comput. Sci. 37, 43–53.

    Article  CAS  Google Scholar 

  38. Corey, E. J., and Wipke, W. T. (1969) Computer-assisted design of complex organic syntheses. Science 166, 178–192.

    Article  PubMed  CAS  Google Scholar 

  39. THERESA. Molecular Networks. http://www.molecular-networks.com/products/theresa (accessed October 2, 2009).

  40. Dugundji, J., and Ugi, I. (1973) Algebraic model of constitutional chemistry as a basis for chemical computer programs. Fortschr. Chem. Forsch. 39, 19–64.

    Article  CAS  Google Scholar 

  41. Bauer, J., Herges, R., Fontain, E., and Ugi, I. (1985) IGOR and computer assisted innovation in chemistry. Chimia 39, 43–53.

    CAS  Google Scholar 

  42. Gasteiger, J., Ihlenfeldt, W. D., Roese, P., and Wanke, R. (1990) Computer-assisted reaction prediction and synthesis design. Anal. Chim. Acta 235, 65–75.

    Article  CAS  Google Scholar 

  43. Jorgensen, W. L., Laird, E. R., Gushurst, A. J., Fleischer, J. M., Gothe, S. A., Helson, H. E., Paderes, G. D., and Sinclair, S. (1990) CAMEO: a program for the logical prediction of the products of organic reactions. Pure Appl. Chem. 62, 1921–1932.

    Article  CAS  Google Scholar 

  44. Sadowski, J., Wagener, M., and Gasteiger, J. (1996) Assessing similarity and diversity of combinatorial libraries by spatial autocorrelation functions and neural networks. Angew. Chem. Int. Ed. Engl. 34, 2674–2677.

    Article  Google Scholar 

  45. Sadowski, J., Gasteiger, J., and Klebe, G. (2002) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J. Chem. Inf. Comput. Sci. 34, 1000–1008.

    Google Scholar 

  46. Kennard, O., Watson, D. G., and Town, W. G. (1972) Cambridge Crystallographic Data Centre. I. Bibliographic file. J. Chem. Doc. 12, 14–19.

    Article  CAS  Google Scholar 

  47. Allen, F. H., Kennard, O., Motherwell, W. D. S., Town, W. G., and Watson, D. G. (1973) Cambridge Crystallographic Data Centre. II. Structural data file. J. Chem. Doc. 13, 119–123.

    Article  CAS  Google Scholar 

  48. Allen, F. H. (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. Sect. B Struct. Sci. B58, 380–388.

    Article  CAS  Google Scholar 

  49. Allen, F. H., Battle, G., and Robertson, S. (2007) The Cambridge Structural Database, in Comprehensive Medicinal Chemistry II. (Triggle, D. J., and Taylor, J. B., Eds.), Elsevier, Amsterdam, The Netherlands, Vol. 3, pp 389–410.

    Google Scholar 

  50. Berman, H. M. (2008) The Protein Data Bank: a historical perspective. Acta Crystallogr., Sect. A Found. Crystallogr. A64, 88–95.

    Article  CAS  Google Scholar 

  51. Martin, Y. C. (1998) Pharmacophore mapping, in Designing Bioactive Molecules (Martin, Y. C., and Willett, P., Eds.), American Chemical Society, Washington, DC, pp 121–148.

    Google Scholar 

  52. Martin, Y. C., Bures, M. G., Danaher, E. A., DeLazzer, J., Lico, I., and Pavlik, P. A. (1993) A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J. Comput.-Aided Mol. Des. 7, 83–102.

    Article  PubMed  CAS  Google Scholar 

  53. Greene, J., Kahn, S., Savoj, H., Sprague, P., and Teig, S. (1994) Chemical function queries for 3D database search. J. Chem. Inf. Comput. Sci. 34, 1297–1308.

    Article  CAS  Google Scholar 

  54. Sprague, P. (1995) Automated chemical hypothesis generation and database searching with Catalyst. Perspect. Drug Discov. Des. 3, 1–20.

    Article  CAS  Google Scholar 

  55. Jones, G., Willett, P., and Glen, R. C. (1995) A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J. Comput.-Aided Mol. Des. 9, 532–549.

    Article  PubMed  CAS  Google Scholar 

  56. Jones, G., Willett, P., and Glen, R. C. (1995) Molecular recognition of a receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 245, 43–53.

    Article  PubMed  CAS  Google Scholar 

  57. Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. (1997) Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748.

    Article  PubMed  CAS  Google Scholar 

  58. Winkler, D. A. (2002) The role of quantitative structure-activity relationships (QSAR) in biomolecular discovery. Briefings Bioinf. 3, 73–86.

    Article  CAS  Google Scholar 

  59. Tropsha, A. (2003) Recent trends in quantitative structure-activity relationships, in Burger’s Medicinal Chemistry and Drug Discovery, Volume 1, Drug Discovery (Abraham, D. J., Ed.) 6th ed., Wiley, New York, NY.

    Google Scholar 

  60. Tropsha, A. (2005) Application of predictive QSAR models to database mining, in Cheminformatics in Drug Discovery (Oprea, T. I., Ed.), Wiley, New York, NY, pp 437–455.

    Chapter  Google Scholar 

  61. Gramatica, P. A short history of QSAR evolution. http://www.qsarworld.com/Temp_Fileupload/Shorthistoryofqsar.pdf (accessed September 23, 2009).

  62. Hawkins, D. M. QSAR approaches, models and statistics relating to toxicity prediction. In W. A Warr. Proceedings of New Horizons in Toxicity Prediction. Lhasa Limited symposium event in collaboration with the University of Cambridge, December 2008. http://www.qsarworld.com/files/Lhasa_Symposium_2008_Report.pdf (accessed September 23, 2009).

  63. Cramer, R. D., Patterson, D. E., and Bunce, J. D. (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959–5967.

    Article  PubMed  CAS  Google Scholar 

  64. Klebe, G., Abraham, U., and Mietzner, T. (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 37, 4130–4146.

    Article  PubMed  CAS  Google Scholar 

  65. Lemmen, C., Lengauer, T., and Klebe, G. (1998) FlexS: a method for fast flexible ligand superposition. J. Med. Chem. 41, 4502–4520.

    Article  PubMed  CAS  Google Scholar 

  66. Kennedy, T. (1997) Managing the drug discovery/development interface. Drug Discov. Today 2, 436–444.

    Article  Google Scholar 

  67. Benigni, R., (Ed.) (2003) Quantitative Structure-Activity Relationship (QSAR) Models of Mutagens and Carcinogens, CRC Press, Boca Raton, FL.

    Google Scholar 

  68. Cronin, M. T. D., and Livingstone, D. J., (Eds.) (2004) Predicting Chemical Toxicity and Fate, CRC Press, Boca Raton, FL.

    Google Scholar 

  69. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25.

    Article  CAS  Google Scholar 

  70. Cramer, R. (1995) Unpublished work.

    Google Scholar 

  71. Güner, O. F., (Ed.) (2000) Pharmacophore: Perception, Development, and Use in Drug Design. [In: IUL Biotechnol. Ser., 2000; 2], International University Line, La Jolla, CA.

    Google Scholar 

  72. Willett, P., (Ed.) (1997) Computational Methods for the Analysis of Molecular Diversity (Perspectives in Drug Discovery and Design 1997, Volumes 7/8), Kluwer/Escom, Dordrecht, The Netherlands.

    Google Scholar 

  73. Brown, R. D., and Martin, Y. C. (1996) Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sci. 36, 572–584.

    Article  CAS  Google Scholar 

  74. Brown, R. D., and Martin, Y. C. (1997) The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J. Chem. Inf. Comput. Sci. 37, 1–9.

    Article  CAS  Google Scholar 

  75. Martin, E. J., Blaney, J. M., Siani, M. A., Spellmeyer, D. C., Wong, A. K., and Moos, W. H. (1995) Measuring diversity: experimental design of combinatorial libraries for drug discovery. J. Med. Chem. 38, 1431–1436.

    Article  PubMed  CAS  Google Scholar 

  76. Gillet, V. J., Willett, P., and Bradshaw, J. (1997) The effectiveness of reactant pools for generating structurally-diverse combinatorial libraries. J. Chem. Inf. Comput. Sci. 37, 731–740.

    Article  CAS  Google Scholar 

  77. Cottrell, S. J., Gillet, V. J., Taylor, R., and Wilton, D. J. (2004) Generation of multiple pharmacophore hypotheses using multiobjective optimisation techniques. J. Comput.-Aided Mol. Des. 18, 665–682.

    Article  PubMed  CAS  Google Scholar 

  78. Cottrell, S., Gillet, V., and Taylor, R. (2006) Incorporating partial matches within multiobjective pharmacophore identification. J. Comput.-Aided Mol. Des. 20, 735–749.

    Article  PubMed  CAS  Google Scholar 

  79. Teague, S., J., Davis, A., M., Leeson, P., D., and Oprea, T. I. (1999) The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. Engl. 38, 3743–3748.

    Google Scholar 

  80. Oprea, T. I., Davis, A. M., Teague, S. J., and Leeson, P. D. (2001) Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 41, 1308–1315.

    Article  PubMed  CAS  Google Scholar 

  81. Hann, M. M., Leach, A. R., and Harper, G. (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864.

    Article  PubMed  CAS  Google Scholar 

  82. Sadowski, J., and Kubinyi, H. (1998) A scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem. 41, 3325–3329.

    Article  PubMed  CAS  Google Scholar 

  83. Wagener, M., and Van Geerestein, V. J. (2000) Potential drugs and nondrugs: prediction and identification of important structural features. J. Chem. Inf. Comput. Sci. 40, 280–292.

    Article  PubMed  CAS  Google Scholar 

  84. Willett, P. (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today 11, 1046–1053.

    Article  PubMed  CAS  Google Scholar 

  85. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., and Ferrin, T. E. (1982) A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161, 269–288.

    Article  PubMed  CAS  Google Scholar 

  86. Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996) A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489.

    Article  PubMed  CAS  Google Scholar 

  87. McMeeking, B., and Fletcher, D. (2004) The United Kingdom Chemical Database Service: CDS, in Cheminformatics Developments (Noordik, J., H., Ed.), IOS Press, Amsterdam, The Netherlands, pp 37–67.

    Google Scholar 

  88. (Multiple authors) (2006) Focus on Cyberinfrastructure (“e-science”), the Enabling Platform for Cheminformatics. J. Chem. Inf. Model. 46.

    Google Scholar 

  89. Zsoldos, Z., Reid, D., Simon, A., Sadjad, S. B., and Johnson, A. P. (2007) eHiTS: a new fast, exhaustive flexible ligand docking system. J. Mol. Graphics Modell. 26, 198–212.

    Article  CAS  Google Scholar 

  90. Salamone, S. GTA4: enabler of life sciences research? http://www.bio-itworld.com/inside-it/2008/2005/gta2004-and-life-sciences.html (accessed October 2, 2009).

  91. Murray-Rust, P. (2008) Chemistry for everyone. Nature (London, U. K.) 451, 648–651.

    Google Scholar 

  92. Williams, A. J. (2008) Internet-based tools for communication and collaboration in chemistry. Drug Discov. Today 13, 502–506.

    Article  PubMed  CAS  Google Scholar 

  93. Warr, W. A. (2008) Social software: fun and games, or business tools? J. Inf. Sci. 34, 591–604.

    Article  Google Scholar 

  94. Coles, S. J., Day, N. E., Murray-Rust, P., Rzepa, H. S., and Zhang, Y. (2005) Enhancement of the chemical semantic web through the use of InChI identifiers. Org. Biomol. Chem. 3, 1832–1834.

    Article  PubMed  CAS  Google Scholar 

  95. Guha, R., Howard, M. T., Hutchison, G. R., Murray-Rust, P., Rzepa, H., Steinbeck, C., Wegner, J., and Willighagen, E. L. (2006) The Blue Obelisk. Interoperability in chemical informatics. J. Chem. Inf. Model. 46, 991–998.

    Article  PubMed  CAS  Google Scholar 

  96. Taylor, K. R., Gledhill, R. J., Essex, J. W., Frey, J. G., Harris, S. W., and De Roure, D. C. (2006) Bringing chemical data onto the semantic web. J. Chem. Inf. Model. 46, 939–952.

    Article  PubMed  CAS  Google Scholar 

  97. Frey, J. G. (2009) The value of the Semantic Web in the laboratory. Drug Discov. Today 14, 552–561.

    Article  PubMed  Google Scholar 

  98. Gardner, B. Approaches to information integration. Paper given at ICIC 2007, Sitges, Spain, October 21–24, 2007. http://www.infonortics.eu/chemical/ch07/slides/gardner.pdf (accessed September 18, 2009).

  99. Symyx Technologies. DiscoveryGate. http://www.discoverygate.com (accessed October 2, 2009).

  100. ChemSpider. http://www.chemspider.com (accessed September 18, 2009).

  101. Warr, W. A. Workflow and pipelining in cheminformatics. http://www.qsarworld.com/qsar-workflow1.php (accessed October 2, 2009).

  102. Jorgensen, W. L. (2004) The many roles of computation in drug discovery. Science 303, 1813–1818.

    Article  PubMed  CAS  Google Scholar 

  103. PubChem. http://pubchem.ncbi.nlm.nih.gov/search/search.cgi (accessed September 18, 2009).

  104. Oprea, T. I., Tropsha, A., Faulon, J.-L., and Rintoul, M. D. (2007) Systems chemical biology. Nat. Chem. Biol. 3, 447–450.

    Article  PubMed  CAS  Google Scholar 

  105. Therapeutics for Rare and Neglected Diseases. http://www.nih.gov/news/health/may2009/nhgri-2020.htm (accessed October 7, 2009).

  106. DeLano, W. L. (2005) The case for open-source software in drug discovery. Drug Discov. Today 10, 213–217.

    Article  PubMed  CAS  Google Scholar 

  107. Stahl, M. T. (2005) Open-source software: not quite endsville. Drug Discov. Today 10, 219–222.

    Article  PubMed  CAS  Google Scholar 

  108. The Pistoia Alliance. http://pistoiaalliance.org/ (accessed October 7, 2009).

  109. Barnes, M. R., Harland, L., Foord, S. M., Hall, M. D., Dix, I., Thomas, S., Williams-Jones, B. I., and Brouwer, C. R. (2009) Lowering industry firewalls: pre-competitive informatics initiatives in drug discovery. Nat. Rev. Drug Discov. 8, 701–708.

    Article  PubMed  CAS  Google Scholar 

  110. Lhasa Limited. Derek for Windows. http://www.lhasalimited.org/ (accessed October 7, 2009).

  111. Irwin, J. J., and Shoichet, B. K. (2004) ZINC – a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182.

    Article  CAS  Google Scholar 

  112. eMolecules. http://www.emolecules.com (accessed September 18, 2009).

  113. NIH/CADD chemical structure lookup service. http://cactus.nci.nih.gov/lookup (accessed October 2, 2009).

  114. Williams, A. J. (2008) A perspective of publicly accessible/open-access chemistry databases. Drug Discov. Today 13, 495–501.

    Article  PubMed  CAS  Google Scholar 

  115. Fink, T., and Reymond, J.-L. (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J. Chem. Inf. Model. 47, 342–353.

    Article  PubMed  CAS  Google Scholar 

  116. Blum, L. C., and Reymond, J.-L. (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732–8733.

    Article  PubMed  CAS  Google Scholar 

  117. Collaborative Drug Discovery. http://www.collaborativedrug.com/ (accessed September 18, 2009).

  118. Morgan, H. L. (1965) The generation of a unique machine description for chemical structures – a technique developed at Chemical Abstracts Service. J. Chem. Doc. 5, 107–113.

    Article  CAS  Google Scholar 

  119. Wipke, W. T., and Dyott, T. M. (1974) Stereochemically unique naming algorithm. J. Am. Chem. Soc. 96, 4834–4842.

    Article  CAS  Google Scholar 

  120. Hillard, R., and Taylor, K. T. (2009) InChI keys as standard global identifiers in chemistry web services, in Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, March 22–26, 2009.

    Google Scholar 

  121. The IUPAC International Chemical Identifier (InChI). http://www.iupac.org/inchi/ (accessed September 18, 2009).

  122. Heller, S. R., and McNaught, A. D. (2009) The IUPAC international chemical identifier (InChI). Chem. Int. 31, 7–9.

    CAS  Google Scholar 

  123. Warr, W. A. The IUPAC International Chemical Identifier. http://www.qsarworld.com/INCHI1.php (accessed September 18, 2009).

  124. McKay, B. D. (1981) Practical graph isomorphism. Congressus Numeratium 30, 45–87.

    Google Scholar 

  125. Weininger, D. (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36.

    Article  CAS  Google Scholar 

  126. Weininger, D., Weininger, A., and Weininger, J. L. (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Comput. Sci. 29, 97–101.

    Article  CAS  Google Scholar 

  127. Leach, A. R., Shoichet, B. K., and Peishoff, C. E. (2006) Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem. 49, 5851–5855.

    Article  PubMed  CAS  Google Scholar 

  128. Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., and Corbeil, C. R. (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br. J. Pharmacol. 153, S7-S26.

    Article  PubMed  CAS  Google Scholar 

  129. Wang, R., Lai, L., and Wang, S. (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput.-Aided Mol. Des. 16, 11–26.

    Article  PubMed  CAS  Google Scholar 

  130. Waszkowycz, B. (2008) Towards improving compound selection in structure-based virtual screening. Drug Discov. Today 13, 219–226.

    Article  PubMed  CAS  Google Scholar 

  131. Jorgensen, W. L. (2009) Efficient drug lead discovery and optimization. Acc. Chem. Res. 42, 724–733.

    Article  PubMed  CAS  Google Scholar 

  132. Irwin, J. (2008) Community benchmarks for virtual screening. J. Comput.-Aided Mol. Des. 22, 193–199.

    Article  PubMed  CAS  Google Scholar 

  133. Liebeschuetz, J. (2008) Evaluating docking programs: keeping the playing field level. J. Comput.-Aided Mol. Des. 22, 229–238.

    Article  PubMed  CAS  Google Scholar 

  134. DUD. A Directory of Useful Decoys. http://dud.docking.org/ (accessed September 18, 2009).

  135. Huang, N., Shoichet, B. K., and Irwin, J. J. (2006) Benchmarking sets for molecular docking. J. Med. Chem. 49, 6789–6801.

    Article  PubMed  CAS  Google Scholar 

  136. Good, A., and Oprea, T. (2008) Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection? J. Comput.-Aided Mol. Des. 22, 169–178.

    Article  PubMed  CAS  Google Scholar 

  137. Jain, A. (2008) Bias, reporting, and sharing: computational evaluations of docking methods. J. Comput.-Aided Mol. Des. 22, 201–212.

    Article  PubMed  CAS  Google Scholar 

  138. Jain, A., and Nicholls, A. (2008) Recommendations for evaluation of computational methods. J. Comput.-Aided Mol. Des. 22, 133–139.

    Article  PubMed  CAS  Google Scholar 

  139. Cole, J. C., Murray, C. W., Nissink, J. W. M., Taylor, R. D., and Taylor, R. (2005) Comparing protein-ligand docking programs is difficult. Proteins Struct., Funct., Bioinf. 60, 325–332.

    Article  CAS  Google Scholar 

  140. Clark, R., and Webster-Clark, D. (2008) Managing bias in ROC curves. J. Comput.-Aided Mol. Des. 22, 141–146.

    Article  PubMed  CAS  Google Scholar 

  141. Nicholls, A. (2008) What do we know and when do we know it? J. Comput.-Aided Mol. Des. 22, 239–255.

    Article  PubMed  CAS  Google Scholar 

  142. Truchon, J.-F., and Bayly, C. I. (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J. Chem. Inf. Model. 47, 488–508.

    Article  PubMed  CAS  Google Scholar 

  143. Sheridan, R. P., Singh, S. B., Fluder, E. M., and Kearsley, S. K. (2001) Protocols for bridging the peptide to nonpeptide gap in topological similarity searches. J. Chem. Inf. Comput. Sci. 41, 1395–1406.

    Article  PubMed  CAS  Google Scholar 

  144. Hawkins, P. C. D., Skillman, A. G., and Nicholls, A. (2006) Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem. 50, 74–82.

    Article  CAS  Google Scholar 

  145. Zhang, Q., and Muegge, I. (2006) Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. J. Med. Chem. 49, 1536–1548.

    Article  PubMed  CAS  Google Scholar 

  146. McGaughey, G. B., Sheridan, R. P., Bayly, C. I., Culberson, J. C., Kreatsoulas, C., Lindsley, S., Maiorov, V., Truchon, J.-F., and Cornell, W. D. (2007) Comparison of topological, shape, and docking methods in virtual screening. J. Chem. Inf. Model. 47, 1504–1519.

    Article  PubMed  CAS  Google Scholar 

  147. Rush, T. S., Grant, J. A., Mosyak, L., and Nicholls, A. (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein–protein interaction. J. Med. Chem. 48, 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  148. Verdonk, M. L., Berdini, V., Hartshorn, M. J., Mooij, W. T. M., Murray, C. W., Taylor, R. D., and Watson, P. (2004) Virtual screening using protein-ligand docking: avoiding artificial enrichment. J. Chem. Inf. Comput. Sci. 44, 793–806.

    Article  PubMed  CAS  Google Scholar 

  149. Klebe, G. (2006) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov. Today 11, 580–594.

    Article  PubMed  CAS  Google Scholar 

  150. Böhm, H.-J. (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput.-Aided Mol. Des. 6, 61–78.

    Article  PubMed  Google Scholar 

  151. Law, J. M. S., Fung, D. Y. K., Zsoldos, Z., Simon, A., Szabo, Z., Csizmadia, I. G., and Johnson, A. P. (2003) Validation of the SPROUT de novo design program. Theochem 666–667, 651–657.

    Article  CAS  Google Scholar 

  152. Boda, K., and Johnson, A. P. (2006) Molecular complexity analysis of de novo designed ligands. J. Med. Chem. 49, 5869–5879.

    Article  PubMed  CAS  Google Scholar 

  153. Barreiro, G., Kim, J. T., Guimaraes, C. R. W., Bailey, C. M., Domaoal, R. A., Wang, L., Anderson, K. S., and Jorgensen, W. L. (2007) From docking false-positive to active anti-HIV agent. J. Med. Chem. 50, 5324–5329.

    Article  PubMed  CAS  Google Scholar 

  154. Baber, J. C., and Feher, M. (2004) Predicting synthetic accessibility: application in drug discovery and development. Mini-Rev. Med. Chem. 4, 681–692.

    Article  PubMed  CAS  Google Scholar 

  155. Boda, K., Seidel, T., and Gasteiger, J. (2007) Structure and reaction based evaluation of synthetic accessibility. J. Comput.-Aided Mol. Des. 21, 311–325.

    Article  PubMed  CAS  Google Scholar 

  156. Zaliani, A., Boda, K., Seidel, T., Herwig, A., Schwab, C. H., Gasteiger, J., Claussen, H., Lemmen, C., Degen, J., Paern, J., and Rarey, M. (2009) Second-generation de novo design: a view from a medicinal chemist perspective. J. Comput.-Aided Mol. Des. 23, 593–602.

    Article  PubMed  CAS  Google Scholar 

  157. Patel, H., Bodkin, M. J., Chen, B., and Gillet, V. J. (2009) Knowledge-based approach to de novo design using reaction vectors. J. Chem. Inf. Model. 49, 1163–1184.

    Article  PubMed  CAS  Google Scholar 

  158. Shuker, S. B., Hajduk, P. J., Meadows, R. P., and Fesik, S. W. (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534.

    Article  PubMed  CAS  Google Scholar 

  159. Allen, K. N., Bellamacina, C. R., Ding, X., Jeffery, C. J., Mattos, C., Petsko, G. A., and Ringe, D. (1996) An experimental approach to mapping the binding surfaces of crystalline proteins. J. Phys. Chem. 100, 2605–2611.

    Article  CAS  Google Scholar 

  160. Carr, R. A. E., Congreve, M., Murray, C. W., and Rees, D. C. (2005) Fragment-based lead discovery: leads by design. Drug Discov. Today 10, 987–992.

    Article  PubMed  CAS  Google Scholar 

  161. Warr, W. (2009) Fragment-based drug discovery. J. Comput.-Aided Mol. Des. 23, 453-458.

    Article  PubMed  CAS  Google Scholar 

  162. Joseph-McCarthy, D. (2009) Challenges of fragment screening. J. Comput.-Aided Mol. Des. 23, 449–451.

    Article  PubMed  CAS  Google Scholar 

  163. Chen, I. J., and Hubbard, R. (2009) Lessons for fragment library design: analysis of output from multiple screening campaigns. J. Comput.-Aided Mol. Des. 23, 603–620.

    Article  PubMed  CAS  Google Scholar 

  164. Hopkins, A. L., Groom, C. R., and Alex, A. (2004) Ligand efficiency: a useful metric for lead selection. Drug Discovery Today 9, 430–431.

    Article  PubMed  Google Scholar 

  165. Abad-Zapatero, C., and Metz James, T. (2005) Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today 10, 464–469.

    Article  PubMed  Google Scholar 

  166. Leeson, P. D., and Springthorpe, B. (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6, 881–890.

    Article  PubMed  CAS  Google Scholar 

  167. Congreve, M., Chessari, G., Tisi, D., and Woodhead, A. J. (2008) Recent developments in fragment-based drug discovery. J. Med. Chem. 51, 3661–3680.

    Article  PubMed  CAS  Google Scholar 

  168. Congreve, M., Carr, R., Murray, C., and Jhoti, H. (2003) A “rule of three” for fragment-based lead discovery? Drug Discov. Today 8, 876–877.

    Article  PubMed  Google Scholar 

  169. Hajduk, P. J., and Greer, J. (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat. Rev. Drug Discov. 6, 211–219.

    Article  PubMed  CAS  Google Scholar 

  170. Erlanson, D. A., Wells, J. A., and Braisted, A. C. (2004) Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 33, 199–223, 194 plates.

    Google Scholar 

  171. Blomberg, N., Cosgrove, D., Kenny, P., and Kolmodin, K. (2009) Design of compound libraries for fragment screening. J. Comput.-Aided Mol. Des. 23, 513–525.

    Article  PubMed  CAS  Google Scholar 

  172. de Kloe, G. E., Bailey, D., Leurs, R., and de Esch, I. J. P. (2009) Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov. Today 14, 630–646.

    Article  PubMed  Google Scholar 

  173. Willett, P. (2009) Similarity methods in chemoinformatics. Ann. Rev. Inf. Sci. Technol. 43, 3–71.

    Google Scholar 

  174. Eckert, H., and Bajorath, J. (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today 12, 225–233.

    Article  PubMed  CAS  Google Scholar 

  175. Raymond, J. W., and Willett, P. (2002) Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput.-Aided Mol. Des. 16, 521–533.

    Article  PubMed  CAS  Google Scholar 

  176. Ghose, A. K., Herbertz, T., Salvino, J. M., and Mallamo, J. P. (2006) Knowledge-based chemoinformatic approaches to drug discovery. Drug Discov. Today 11, 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  177. Accelrys. Pipeline Pilot http://accelrys.com/products/scitegic/ (accessed October 2, 2009).

  178. Simulations Plus. ClassPharmer. http://www.simulations-plus.com/ (accessed October 6, 2009).

  179. ChemAxon. Library MCS. http://www.chemaxon.com/shared/libMCS/ (accessed October 2, 2009).

  180. Cramer, R. D. (2003) Topomer CoMFA: a design methodology for rapid lead optimization. J. Med. Chem. 46, 374–388.

    Article  PubMed  CAS  Google Scholar 

  181. Jilek, R. J., and Cramer, R. D. (2004) Topomers: a validated protocol for their self-consistent generation. J. Chem. Inf. Comput. Sci. 44, 1221–1227.

    Article  PubMed  CAS  Google Scholar 

  182. Cramer, R., and Wendt, B. (2007) Pushing the boundaries of 3D-QSAR. J. Comput.-Aided Mol. Des. 21, 23–32.

    Article  PubMed  CAS  Google Scholar 

  183. Lill, M. A. (2007) Multi-dimensional QSAR in drug discovery. Drug Discov. Today 12, 1013–1017.

    Article  PubMed  CAS  Google Scholar 

  184. Hopfinger, A. J., Wang, S., Tokarski, J. S., Jin, B., Albuquerque, M., Madhav, P. J., and Duraiswami, C. (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc. 119, 10509–10524.

    Article  CAS  Google Scholar 

  185. Stouch, T. R., Kenyon, J. R., Johnson, S. R., Chen, X.-Q., Doweyko, A., and Li, Y. (2003) In silico ADME/Tox: why models fail. J. Comput.-Aided Mol. Des. 17, 83–92.

    Article  PubMed  CAS  Google Scholar 

  186. Kubinyi, H. Why models fail. http://americanchemicalsociety.mediasite.com/acs/viewer/?peid=7a194d147-baa199-194b192d-a823-191fd117bf5301c (accessed September 22, 2009).

  187. Tropsha, A., and Golbraikh, A. (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des. 13, 3494–3504.

    Article  PubMed  CAS  Google Scholar 

  188. Hawkins, D. M. (2003) The problem of overfitting. J. Chem. Inf. Comput. Sci. 44, 1–12.

    Google Scholar 

  189. Sheridan, R. P., Feuston, B. P., Maiorov, V. N., and Kearsley, S. K. (2004) Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J. Chem. Inf. Comput. Sci. 44, 1912–1928.

    Article  PubMed  CAS  Google Scholar 

  190. Kubinyi, H., Hamprecht, F. A., and Mietzner, T. (1998) Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J. Med. Chem. 41, 2553–2564.

    Article  PubMed  CAS  Google Scholar 

  191. Kubinyi, H. (2006) Validation and predictivity of QSAR models, in QSAR & Molecular Modelling in Rational Design of Bioactive Molecules, Proceedings of the 15th European Symposium on Structure-Activity Relationships and Molecular Modelling, Istanbul, Turkey 2004, pp 30–33.

    Google Scholar 

  192. Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y.-D., Lee, K.-H., and Tropsha, A. (2003) Rational selection of training and test sets for the development of validated QSAR models. J. Comput.-Aided Mol. Des. 17, 241–253.

    Article  PubMed  CAS  Google Scholar 

  193. Golbraikh, A., and Tropsha, A. (2002) Beware of q2! J. Mol. Graphics Modell. 20, 269–276.

    Article  CAS  Google Scholar 

  194. Doweyko, A. M. (2004) 3D-QSAR illusions. J. Comput.-Aided Mol. Des. 18, 587–596.

    Article  PubMed  CAS  Google Scholar 

  195. Gramatica, P. (2007) Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 26, 694–701.

    Article  CAS  Google Scholar 

  196. Tropsha, A., Gramatica, P., and Gombar, V. K. (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Comb. Sci. 22, 69–77.

    Article  CAS  Google Scholar 

  197. Jorgensen, W. L. (2006) QSAR/QSPR and proprietary data. J. Chem. Inf. Model. 46, 937–937.

    Article  CAS  Google Scholar 

  198. Editorial. (2006) QSAR/QSPR and proprietary data. J. Med. Chem. 49, 3431–3431.

    Google Scholar 

  199. ChemMedChem notice to authors. http://www3.interscience.wiley.com/journal/110485305/home/110482452_notice.html?CRETRY=110485301&SRETRY=110485300 (accessed September 22, 2009).

  200. Maggiora, G. M. (2006) On outliers and activity cliffs. Why QSAR often disappoints. J. Chem. Inf. Model. 46, 1535–1535.

    Article  PubMed  CAS  Google Scholar 

  201. Peltason, L., and Bajorath, J. (2007) Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes. Chem. Biol. 14, 489–497.

    Article  PubMed  CAS  Google Scholar 

  202. Peltason, L., and Bajorath, J. (2007) SAR Index: quantifying the nature of structure-activity relationships. J. Med. Chem. 50, 5571–5578.

    Article  PubMed  CAS  Google Scholar 

  203. Guha, R., and Van Drie, J. H. (2008) Assessing how well a modeling protocol captures a structure-activity landscape. J. Chem. Inf. Model. 48, 1716–1728.

    Article  PubMed  CAS  Google Scholar 

  204. Guha, R., and Van Drie, J. H. (2008) Structure-activity landscape index: identifying and quantifying activity cliffs. J. Chem. Inf. Model. 48, 646–658.

    Article  PubMed  CAS  Google Scholar 

  205. Medina-Franco, J. L., Martinez-Mayorga, K., Bender, A., Marin, R. M., Giulianotti, M. A., Pinilla, C., and Houghten, R. A. (2009) Characterization of activity landscapes using 2D and 3D similarity methods: consensus activity cliffs. J. Chem. Inf. Model. 49, 477–491.

    Article  PubMed  CAS  Google Scholar 

  206. Johnson, S. R. (2007) The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J. Chem. Inf. Model. 48, 25–26.

    Article  PubMed  CAS  Google Scholar 

  207. Pavan, M., and Worth, A. P. Review of QSAR Models for Ready Biodegradation. http://ecb.jrc.ec.europa.eu/documents/QSAR/QSAR_Review_Biodegradation.pdf (accessed September 23, 2009).

  208. Warr, W. A. Proceedings of New Horizons in Toxicity Prediction. Lhasa Limited symposium event in collaboration with the University of Cambridge, December 2008. http://www.qsarworld.com/files/Lhasa_Symposium_2008_Report.pdf (accessed September 23, 2009).

  209. Huynh, L., Masereeuw, R., Friedberg, T., Ingelman-Sundberg, M., and Manivet, P. (2009) In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part I: beyond the reduction of animal model use. Drug Discov. Today 14, 401–405.

    Article  PubMed  CAS  Google Scholar 

  210. Gramatica, P., Pilutti, P., and Papa, E. (2004) Validated QSAR prediction of OH tropospheric degradation of VOCs: splitting into training-test sets and consensus modeling. J. Chem. Inf. Comput. Sci. 44, 1794–1802.

    Article  PubMed  CAS  Google Scholar 

  211. Hewitt, M., Cronin, M. T. D., Madden, J. C., Rowe, P. H., Johnson, C., Obi, A., and Enoch, S. J. (2007) Consensus QSAR models: do the benefits outweigh the complexity? J. Chem. Inf. Model. 47, 1460–1468.

    Article  PubMed  CAS  Google Scholar 

  212. Matthews, E. J., Kruhlak, N. L., Benz, R. D., Contrera, J. F., Marchant, C. A., and Yang, C. (2008) Combined use of MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM, and Derek for Windows software to achieve high-performance, high-confidence, mode of action-based predictions of chemical carcinogenesis in rodents. Toxicol. Mech. Methods 18, 189–206.

    Article  PubMed  CAS  Google Scholar 

  213. Abshear, T., Banik, G. M., D'Souza, M. L., Nedwed, K., and Peng, C. (2006) A model validation and consensus building environment. SAR QSAR Environ. Res. 17, 311–321.

    Article  PubMed  CAS  Google Scholar 

  214. Boyer, S., Arnby, C. H., Carlsson, L., Smith, J., Stein, V., and Glen, R. C. (2007) Reaction site mapping of xenobiotic biotransformations. J. Chem. Inf. Model. 47, 583–590.

    Article  PubMed  CAS  Google Scholar 

  215. Terfloth, L., Bienfait, B., and Gasteiger, J. (2007) Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J. Chem. Inf. Model. 47, 1688–1701.

    Article  PubMed  CAS  Google Scholar 

  216. Molecular Networks. BioPath. http://www.mol-net.de/biopath/index.html (accessed September 25, 2009).

  217. Schwaighofer, A., Schroeter, T., Mika, S., Hansen, K., ter Laak, A., Lienau, P., Reichel, A., Heinrich, N., and Müller, K.-R. (2008) A probabilistic approach to classifying metabolic stability. J. Chem. Inf. Model. 48, 785–796.

    Article  PubMed  CAS  Google Scholar 

  218. Symyx Technologies. Metabolite. http://www.symyx.com/products/databases/bioactivity/metabolite/index.jsp (accessed October 2, 2009).

  219. Ridder, L., and Wagener, M. (2008) SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. ChemMedChem 3, 821–832.

    Article  PubMed  CAS  Google Scholar 

  220. Button, W. G., Judson, P. N., Long, A., and Vessey, J. D. (2003) Using absolute and relative reasoning in the prediction of the potential metabolism of xenobiotics. J. Chem. Inf. Comput. Sci. 43, 1371–1377.

    Article  PubMed  CAS  Google Scholar 

  221. Leach, A. R., Gillet, V. J., Lewis, R. A., and Taylor, R. (2010) Three-Dimensional Pharmacophore Methods in Drug Discovery. J. Med. Chem. 53, 539–558

    Google Scholar 

  222. Wolber, G., Seidel, T., Bendix, F., and Langer, T. (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov. Today 13, 23–29.

    Article  PubMed  CAS  Google Scholar 

  223. Feng, J., Sanil, A., and Young, S. S. (2006) PharmID: pharmacophore identification using Gibbs sampling. J. Chem. Inf. Model. 46, 1352–1359.

    Article  PubMed  CAS  Google Scholar 

  224. Richmond, N. J., Willett, P., and Clark, R. D. (2004) Alignment of three-dimensional molecules using an image recognition algorithm. J. Mol. Graphics Modell. 23, 199–209.

    Article  CAS  Google Scholar 

  225. Richmond, N., Abrams, C., Wolohan, P., Abrahamian, E., Willett, P., and Clark, R. (2006) GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. J. Comput.-Aided Mol. Des. 20, 567–587.

    Article  PubMed  CAS  Google Scholar 

  226. Jain, A. N. (2004) Ligand-based structural hypotheses for virtual screening. J. Med. Chem. 47, 947–961.

    Article  PubMed  CAS  Google Scholar 

  227. Cole, J. C., Gardiner, E. J., Gillet, V. J., and Taylor, R. (2009) Development of test systems for pharmacophore elucidation, in Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, March 22–26, 2009.

    Google Scholar 

  228. Patel, Y., Gillet, V. J., Bravi, G., and Leach, A. R. (2002) A comparison of the pharmacophore identification programs: catalyst, DISCO and GASP. J. Comput.-Aided Mol. Des. 16, 653–681.

    Article  PubMed  CAS  Google Scholar 

  229. Clark, R. D. (2009) Prospective ligand- and target-based 3D QSAR: state of the art 2008. Curr. Top. Med. Chem. 9, 791–810.

    Article  PubMed  CAS  Google Scholar 

  230. Deng, Z., Chuaqui, C., and Singh, J. (2003) Structural Interaction Fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding Interactions. J. Med. Chem. 47, 337–344.

    Article  CAS  Google Scholar 

  231. Muegge, I., and Oloff, S. (2006) Advances in virtual screening. Drug Discov. Today: Technol. 3, 405–411.

    Article  Google Scholar 

  232. Howe, T. J., Mahieu, G., Marichal, P., Tabruyn, T., and Vugts, P. (2006) Data reduction and representation in drug discovery. Drug Discov. Today 12, 45–53.

    Article  PubMed  CAS  Google Scholar 

  233. Ivanenkov, Y. A., Savchuk, N. P., Ekins, S., and Balakin, K. V. (2009) Computational mapping tools for drug discovery. Drug Discov. Today 14, 767–775.

    Article  PubMed  CAS  Google Scholar 

  234. Wagener, M., Sadowski, J., and Gasteiger, J. (1995) Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic AH receptor activity by neural networks. J. Am. Chem. Soc. 117, 7769–7775.

    Article  CAS  Google Scholar 

  235. Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J., and Gasteiger, J. (1996) Locating biologically active compounds in medium-sized heterogeneous datasets by topological autocorrelation vectors: dopamine and benzodiazepine agonists. J. Chem. Inf. Comput. Sci. 36, 1205–1213.

    Article  PubMed  CAS  Google Scholar 

  236. Shneiderman, B. (1992) Tree visualization with tree-maps: 2-D space-filling approach. ACM Trans. Graph. 11, 92–99.

    Article  Google Scholar 

  237. Kibbey, C., and Calvet, A. (2005) Molecular property eXplorer: a novel approach to visualizing SAR using tree-maps and heatmaps. J. Chem. Inf. Model. 45, 523–532.

    Article  PubMed  CAS  Google Scholar 

  238. Yamashita, F., Itoh, T., Hara, H., and Hashida, M. (2006) Visualization of large-scale aqueous solubility data using a novel hierarchical data visualization technique. J. Chem. Inf. Model. 46, 1054–1059.

    Article  PubMed  CAS  Google Scholar 

  239. Lamping, J., Rao, R., and Pirolli, P. (1995) A focus + context technique based on hyperbolic geometry for visualizing large hierarchies, in Proceedings of the SIGCHI conference on human factors in computing systems, Denver, Colorado, United States, ACM Press/Addison-Wesley Publishing Co.

    Google Scholar 

  240. Agrafiotis, D. K., Bandyopadhyay, D., and Farnum, M. (2006) Radial clustergrams: visualizing the aggregate properties of hierarchical clusters. J. Chem. Inf. Model. 47, 69–75.

    Article  CAS  Google Scholar 

  241. Agrafiotis, D. K., and Xu, H. (2002) A self-organizing principle for learning nonlinear manifolds. Proc. Natl. Acad. Sci. USA. 99, 15869–15872.

    Article  PubMed  CAS  Google Scholar 

  242. Agrafiotis, D. K., and Xu, H. (2003) A geodesic framework for analyzing molecular similarities. J. Chem. Inf. Comput. Sci. 43, 475–484.

    Article  PubMed  CAS  Google Scholar 

  243. Agrafiotis, D. K. (2003) Stochastic proximity embedding. J. Comput. Chem. 24, 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  244. Patel, A., Chin, D. N., Singh, J., and Denny, R. A. (2006) Methods for describing a group of chemical structures. WO 2006023574.

    Google Scholar 

  245. Medina-Franco, J. L., Petit, J., and Maggiora, G. M. (2006) Hierarchical strategy for identifying active chemotype classes in compound databases. Chem. Biol. Drug Des. 67, 395–408.

    Article  PubMed  CAS  Google Scholar 

  246. Schuffenhauer, A., Ertl, P., Roggo, S., Wetzel, S., Koch, M. A., and Waldmann, H. (2006) The scaffold tree – visualization of the scaffold universe by hierarchical scaffold classification. J. Chem. Inf. Model. 47, 47–58.

    Article  CAS  Google Scholar 

  247. Bemis, G. W., and Murcko, M. A. (1996) The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893.

    Article  PubMed  CAS  Google Scholar 

  248. Lipkus, A. H., Yuan, Q., Lucas, K. A., Funk, S. A., Bartelt, W. F., Schenck, R. J., and Trippe, A. J. (2008) Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. J. Org. Chem. 73, 4443–4451.

    Article  PubMed  CAS  Google Scholar 

  249. Schuffenhauer, A., Brown, N., Ertl, P., Jenkins, J. L., Selzer, P., and Hamon, J. (2007) Clustering and rule-based classifications of chemical structures evaluated in the biological activity space. J. Chem. Inf. Model. 47, 325–336.

    Article  PubMed  CAS  Google Scholar 

  250. Agrafiotis, D. K., Shemanarev, M., Connolly, P. J., Farnum, M., and Lobanov, V. S. (2007) SAR maps: a new SAR visualization technique for medicinal chemists. J. Med. Chem. 50, 5926–5937.

    Article  PubMed  CAS  Google Scholar 

  251. Kolpak, J., Connolly, P. J., Lobanov, V. S., and Agrafiotis, D. K. (2009) Enhanced SAR Maps: Expanding the Data Rendering Capabilities of a Popular Medicinal Chemistry Tool. J. Chem. Inf. Model. 49, 2221–2230.

    Google Scholar 

  252. Smellie, A. (2007) General purpose interactive physico-chemical property exploration. J. Chem. Inf. Model. 47, 1182–1187.

    Article  PubMed  CAS  Google Scholar 

  253. Krallinger, M., Erhardt, R. A.-A., and Valencia, A. (2005) Text-mining approaches in molecular biology and biomedicine. Drug Discov. Today 10, 439–445.

    Article  PubMed  CAS  Google Scholar 

  254. Ananiadou, S., Kell, D. B., and Tsujii, J.-I. (2006) Text mining and its potential applications in systems biology. Trends Biotechnol. 24, 571–579.

    Google Scholar 

  255. Erhardt, R. A. A., Schneider, R., and Blaschke, C. (2006) Status of text mining techniques applied to biomedical text. Drug Discov. Today 11, 315–325.

    Article  PubMed  CAS  Google Scholar 

  256. Banville, D. L. (2006) Mining chemical structural information from the drug literature. Drug Discov. Today 11, 35–42.

    Article  PubMed  CAS  Google Scholar 

  257. Banville, D. L. (2009) Mining chemical and biological information from the drug literature. Curr. Opin. Drug Discov. Dev. 12, 376–387.

    CAS  Google Scholar 

  258. Banville, D. L., (Ed.) (2009) Chemical Information Mining: Facilitating Literature-Based Discovery, CRC Press, Boca Raton, FL.

    Google Scholar 

  259. RSC Prospect. http://www.rsc.org/Publishing/Journals/ProjectProspect/index.asp (accessed October 2, 2009).

  260. Batchelor, C. R., and Corbett, P. T. (2007) Semantic enrichment of journal articles using chemical named entity recognition, in Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions Prague, Czech Republic, Association for Computational Linguistics, http://www.aclweb.org/anthology/W/W07/W07-1008.pdf (accessed October 2, 2009)

  261. Corbett, P., Batchelor, C., and Teufel, S. (2007) Annotation of chemical named entities, in BioNLP 2007: Biological, translational, and clinical language processing, Prague, Czech Republic, Association for Computational Linguistics, http://www.aclweb.org/anthology/W/W07/W07-1008.pdf (accessed October 2, 2009).

  262. Kidd, R. Prospecting for chemistry in publishing. paper given at ICIC 2008, Nice France October 2008. http://www.infonortics.eu/chemical/ch08/slides/kidd.pdf (accessed October 2, 2008).

  263. RSC Ontologies. http://www.rsc.org/ontologies/ (accessed October 2, 2009).

  264. Valko, A. T., and Johnson, A. P. (2009) CLiDE Pro: the latest generation of CLiDE, a tool for optical chemical structure recognition. J. Chem. Inf. Model. 49, 780–787.

    Article  PubMed  CAS  Google Scholar 

  265. Eigner-Pitto, V., Eiblmaier, J., U. Frieske, U., Isenko, L., Kraut, H., Saller, H., and Loew, P. Mining for chemistry in text and images. A real world example revealing the challenge, scope, limitation and usability of the current technology. paper given at Fraunhofer-Symposium on Text Mining, Bonn, September 29–30, 2008. http://www.scai.fraunhofer.de/fileadmin/download/vortraege/tms_08/Valentina_Eigner_Pitto.pdf (accessed October 2, 2009).

  266. Filippov, I. V., and Nicklaus, M. C. (2009) Optical structure recognition software to recover chemical information: OSRA, an open source solution. J. Chem. Inf. Model. 49, 740–743.

    Article  PubMed  CAS  Google Scholar 

  267. Park, J., Rosania, G., Shedden, K., Nguyen, M., Lyu, N., and Saitou, K. (2009) Automated extraction of chemical structure information from digital raster images. Chem. Cent. J. 3, 4.

    Article  PubMed  CAS  Google Scholar 

  268. Law, J., Zsoldos, Z., Simon, A., Reid, D., Liu, Y., Khew, S. Y., Johnson, A. P., Major, S., Wade, R. A., and Ando, H. Y. (2009) Route Designer: a retrosynthetic analysis tool utilizing automated retrosynthetic rule generation. J. Chem. Inf. Model. 49, 593–602.

    Article  PubMed  CAS  Google Scholar 

  269. InfoChem. http://www.infochem.de (accessed October 2, 2009).

  270. Matthews, E. J. Current Approaches for Toxicity Prediction, in New Horizons in Toxicity Prediction. Lhasa Limited Symposium Event in Collaboration with the University of Cambridge. http://www.qsarworld.com/lhasa_report1.php (accessed October 7, 2009).

  271. Clark, R. D. (2009) At what point does docking morph into 3-D QSAR?, in Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, March 22–26, 2009.

    Google Scholar 

  272. Scheiber, J., Chen, B., Milik, M., Sukuru, S. C. K., Bender, A., Mikhailov, D., Whitebread, S., Hamon, J., Azzaoui, K., Urban, L., Glick, M., Davies, J. W., and Jenkins, J. L. (2009) Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J. Chem. Inf. Model. 49, 308–317.

    Article  PubMed  CAS  Google Scholar 

  273. Schreiber, S. L., Kapoor, T. M., and Wess, G., (Eds.) (2007) Chemical Biology: From Small Molecules to Systems Biology and Drug Design, Wiley-VCH, Weinheim, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Warr, W.A. (2010). Some Trends in Chem(o)informatics. In: Bajorath, J. (eds) Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology, vol 672. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-839-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-839-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-838-6

  • Online ISBN: 978-1-60761-839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics