Skip to main content

Analysis of Actin Assembly by In Vitro TIRF Microscopy

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 571))

Summary

Since directed movement toward an extracellular chemoattractant requires rapid and continuous reorgani­zation of the actin cytoskeleton to form complex structures such as a protruding lamellipodium, it is of great interest to analyze and understand the individual contribution of proteins specifically involved in this process. Over the last decade, enormous progress has been made toward understanding the versatile molecular mechanisms underlying actin-based cell motility and the regulation of site-specific F-actin assembly and disassembly. In spite of this wealth of knowledge and due to the constant discovery of novel regulatory factors, many questions remain to be answered. In this chapter, we describe a powerful method that allows to study the effects of actin-binding proteins on the assembly of single filaments by in vitro total internal reflection fluorescence (TIRF) microscopy using purified proteins and fluorescently labeled actin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Faix, J., Steinmetz, M., Boves, H., Kammerer, R. A., Lottspeich, F., Mintert, U., et al. (1996) Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail. Cell 86, 631–642.

    Article  PubMed  CAS  Google Scholar 

  2. MacLean-Fletcher, S. D. and Pollard, T. D. (1980) Viscometric analysis of the gelation of Acanthamoeba extracts and purification of two gelation factors. J. Cell Biol. 85, 414–428.

    Article  PubMed  CAS  Google Scholar 

  3. Kondo, H. and Ishiwata, S. (1976) Uni-directional growth of F-actin. J. Biochem. 79, 159–171.

    PubMed  CAS  Google Scholar 

  4. Pollard, T. D. (1986) Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754.

    Article  PubMed  CAS  Google Scholar 

  5. Bearer, E. L. (1991) Direct observation of actin filament severing by gelsolin and binding by gCap39 and CapZ. J. Cell Biol. 115, 1629–1638.

    Article  PubMed  CAS  Google Scholar 

  6. Andrianantoandro, E., Blanchoin, L., Sept, D., McCammon, J. A., and Pollard, T. D. (2001) Kinetic mechanism of end-to-end annealing of actin filaments. J. Mol. Biol. 312, 721–730.

    Article  PubMed  CAS  Google Scholar 

  7. Kouyama, T. and Mihashi, K. (1981) Fluorimetry study of N-(1-pyrenyl) iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur. J. Biochem. 114, 33–38.

    Article  PubMed  CAS  Google Scholar 

  8. Amann, K. J. and Pollard, T. D. (2001) Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc. Natl. Acad. Sci. U.S.A. 98, 15009–15013.

    Article  PubMed  CAS  Google Scholar 

  9. Axelrod, D. (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141–145.

    Article  PubMed  CAS  Google Scholar 

  10. Pemrick, S. and Weber, A. (1976) Mechanism of inhibition of relaxation by N-ethylmaleimide treatment of myosin. Biochemistry 15, 5193–5198.

    Article  PubMed  CAS  Google Scholar 

  11. Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N., and Pollard, T. D. (2006) Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124, 423–435.

    Article  PubMed  CAS  Google Scholar 

  12. Michelot, A., Derivery, E., Paterski-Boujemaa, R., Guérin, C., Huang, S., Parcy, F., Staiger, C. J., et al. (2006) A novel mechanism for the formation of actin-filament bundles by a nonprocessive formin. Curr. Biol. 16, 1924–1930.

    Article  PubMed  CAS  Google Scholar 

  13. Romero, S., Le Clainche, C., Didry, D., Egile, C., Pantaloni, D., and Carlier, M. F. (2004) Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429.

    Article  PubMed  CAS  Google Scholar 

  14. Kuhn, J. R. and Pollard, T. D. (2005) Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. Biophys. J. 88, 1387–1402.

    Article  PubMed  CAS  Google Scholar 

  15. Blanchoin, L., Pollard, T. D., and Mullins, R. D. (2000) Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr. Biol. 10, 1273–1282.

    Article  PubMed  CAS  Google Scholar 

  16. Moseley, J. B., Okada, K., Balcer, H. I., Kovar, D. R., Pollard, T. D., and Goode, B. L. (2005) Twinfilin is an actin-filament-severing protein and promotes rapid turnover of actin structures in vivo. J. Cell Sci. 119, 1547–1557.

    Article  Google Scholar 

  17. Michelot, A., Berro, J., Guérin, C., Boujemaa-Paterski, R., Staiger, C. J., Martiel, J. L., et al. (2007) Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr. Biol. 17, 825–833.

    Article  PubMed  CAS  Google Scholar 

  18. Lai, F. P., Szczodrak, M., Block, J., Faix, J., Breitsprecher, D., Mannherz, H. G., et al. (2008) Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 27, 982–992.

    Article  PubMed  CAS  Google Scholar 

  19. Pasic, L., Kotova, T., and Schafer, D. A. (2008) Ena/VASP proteins capture actin filament barbed ends. J. Biol. Chem. 283, 9814–9819.

    Article  PubMed  CAS  Google Scholar 

  20. Popp, D., Yamamoto, A., Iwasa, M., and Maéda, Y. (2006) Direct visualization of actin nematic network formation and dynamics. Biochem. Biophys. Res. Commun. 351, 348–353.

    Article  PubMed  CAS  Google Scholar 

  21. Breitsprecher, D., Kiesewetter, A. A., Linkner, J., Urbanke, C., Resch, G. P., Small, J. V., et al. (2008). Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J. 27, 2943–2954.

    Article  PubMed  CAS  Google Scholar 

  22. Han, Y. H., Chung, C. Y., Wessels, D., Stephens, S., Titus, M. A., Soll, D. R., et al. (2002) Requirement of a vasodilator-stimulated phosphoprotein family member for cell adhesion, the formation of filopodia, and chemotaxis in Dictyostelium. J. Biol. Chem. 277, 49877–49887.

    Article  PubMed  CAS  Google Scholar 

  23. Schirenbeck, A., Arasada, R., Bretschneider, T., Stradal, T. E., Schleicher, M., and Faix, J. (2006) The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation. Proc. Natl. Acad. Sci. U.S.A. 103, 7694–7699.

    Article  PubMed  CAS  Google Scholar 

  24. Sechi, A. S. and Wehland, J. (2004) Ena/VASP proteins: multifunctional regulators of actin cytoskeleton dynamics. Front. Biosci. 9, 1294–1310.

    Article  PubMed  CAS  Google Scholar 

  25. Trichet, L., Sykes, C., and Plastino, J. (2008) Relaxing the actin cytoskeleton for adhesion and movement with Ena/VASP. J. Cell Biol. 181, 19–25.

    Article  PubMed  CAS  Google Scholar 

  26. Fujiwara, I., Vavylonis, D., and Pollard, T. D. (2007) Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy. Proc. Natl. Acad. Sci. U.S.A. 104, 8827–8832.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. David Kovar, Emmanuèle Helfer, Christophe Le Clainche, and Marie-France Carlier for helpful advice to perform in vitro TIRF microscopy of actin assembly. This work was supported by a grant to J.F. (FA 330/4–1) from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Breitsprecher, D., Kiesewetter, A.K., Linkner, J., Faix, J. (2009). Analysis of Actin Assembly by In Vitro TIRF Microscopy. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-198-1_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-197-4

  • Online ISBN: 978-1-60761-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics