Skip to main content

Adeno-associated Viruses as Liver-Directed Gene Delivery Vehicles: Focus on Lipoprotein Metabolism

  • Protocol
  • First Online:
Lipoproteins and Cardiovascular Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1027))

Abstract

Adeno-associated viral vectors have proven to be excellent gene delivery vehicles for somatic overexpression. These viral vectors can efficiently and selectively target the liver, which plays a central role in lipoprotein metabolism. Both liver-expressed as well as non-hepatic secreted proteins can be easily examined in different mouse models using this approach. The dosability of adeno-associated viral (AAV) vectors, as well as their potential for long-term expression, makes them an excellent choice for assessing gene function in vivo. This section will cover the use of AAV to study lipoprotein metabolism—including vector design, virus production and purification, and viral delivery, as well as monitoring of transgene expression and resulting phenotypic changes. Practical information is provided to assist the investigator in designing, interpreting, and troubleshooting experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rux JJ, Burnett RM (2004) Adenovirus structure. Hum Gene Ther 15:1167–1176

    Article  PubMed  CAS  Google Scholar 

  2. Stratford-Perricaudet LD, Levrero M, Chasse JF, Perricaudet M, Briand P (1990) Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector. Hum Gene Ther 1:241–256

    Article  PubMed  CAS  Google Scholar 

  3. Herz J, Gerard RD (1993) Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA 90:2812–2816

    Article  PubMed  CAS  Google Scholar 

  4. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92:883–893

    Article  PubMed  CAS  Google Scholar 

  5. Kopfler WP, Willard M, Betz T, Willard JE, Gerard RD, Meidell RS (1994) Adenovirus-mediated transfer of a gene encoding human apolipoprotein A-I into normal mice increases circulating high-density lipoprotein cholesterol. Circulation 90:1319–1327

    Article  PubMed  CAS  Google Scholar 

  6. Hughes SD, Rouy D, Navaratnam N, Scott J, Rubin EM (1996) Gene transfer of cytidine deaminase apoBEC-1 lowers lipoprotein(a) in transgenic mice and induces apolipoprotein B editing in rabbits. Hum Gene Ther 7:39–49

    Article  PubMed  CAS  Google Scholar 

  7. Stevenson SC, Marshall-Neff J, Teng B, Lee CB, Roy S, McClelland A (1995) Phenotypic correction of hypercholesterolemia in apoE-deficient mice by adenovirus-mediated in vivo gene transfer. Arterioscler Thromb Vasc Biol 15:479–484

    Article  PubMed  CAS  Google Scholar 

  8. Spady DK, Cuthbert JA, Willard MN, Meidell RS (1995) Adenovirus-mediated transfer of a gene encoding cholesterol 7 alpha-hydroxylase into hamsters increases hepatic enzyme activity and reduces plasma total and low density lipoprotein cholesterol. J Clin Invest 96:700–709

    Article  PubMed  CAS  Google Scholar 

  9. Seguret-Mace S, Latta-Mahieu M, Castro G, Luc G, Fruchart JC, Rubin E, Denefle P, Duverger N (1996) Potential gene therapy for lecithin-cholesterol acyltransferase (LCAT)-deficient and hypoalphalipoproteinemic patients with adenovirus-mediated transfer of human LCAT gene. Circulation 94:2177–2184

    Article  PubMed  CAS  Google Scholar 

  10. Applebaum-Bowden D, Kobayashi J, Kashyap VS, Brown DR, Berard A, Meyn S, Parrott C, Maeda N, Shamburek R, Brewer HB Jr, Santamarina-Fojo S (1996) Hepatic lipase gene therapy in hepatic lipase-deficient mice. Adenovirus-mediated replacement of a lipolytic enzyme to the vascular endothelium. J Clin Invest 97:799–805

    Article  PubMed  CAS  Google Scholar 

  11. Yang Y, Jooss KU, Su Q, Ertl HC, Wilson JM (1996) Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther 3:137–144

    PubMed  Google Scholar 

  12. Jooss K, Ertl HC, Wilson JM (1998) Cytotoxic T-lymphocyte target proteins and their major histocompatibility complex class I restriction in response to adenovirus vectors delivered to mouse liver. J Virol 72:2945–2954

    PubMed  CAS  Google Scholar 

  13. Kass-Eisler A, Falck-Pedersen E, Elfenbein DH, Alvira M, Buttrick PM, Leinwand LA (1994) The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Ther 1:395–402

    PubMed  CAS  Google Scholar 

  14. Kozarsky KF, Donahee MH, Glick JM, Krieger M, Rader DJ (2000) Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol 20:721–727

    Article  PubMed  CAS  Google Scholar 

  15. Tsukamoto K, Tangirala RK, Chun S, Usher D, Pure E, Rader DJ (2000) Hepatic expression of apolipoprotein E inhibits progression of atherosclerosis without reducing cholesterol levels in LDL receptor-deficient mice. Mol Ther 1:189–194

    Article  PubMed  CAS  Google Scholar 

  16. Quarck R, De Geest B, Stengel D, Mertens A, Lox M, Theilmeier G, Michiels C, Raes M, Bult H, Collen D, Van Veldhoven P, Ninio E, Holvoet P (2001) Adenovirus-mediated gene transfer of human platelet-activating factor-acetylhydrolase prevents injury-induced neointima formation and reduces spontaneous atherosclerosis in apolipoprotein E-deficient mice. Circulation 103:2495–2500

    Article  PubMed  CAS  Google Scholar 

  17. Juan SH, Lee TS, Tseng KW, Liou JY, Shyue SK, Wu KK, Chau LY (2001) Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104:1519–1525

    Article  PubMed  CAS  Google Scholar 

  18. Belalcazar LM, Merched A, Carr B, Oka K, Chen KH, Pastore L, Beaudet A, Chan L (2003) Long-term stable expression of human apolipoprotein A-I mediated by helper-dependent adenovirus gene transfer inhibits atherosclerosis progression and remodels atherosclerotic plaques in a mouse model of familial hypercholesterolemia. Circulation 107:2726–2732

    Article  PubMed  CAS  Google Scholar 

  19. Dong J, Liu J, Lou B, Li Z, Ye X, Wu M, Jiang XC (2006) Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. J Lipid Res 47:1307–1314

    Article  PubMed  CAS  Google Scholar 

  20. Ng CJ, Bourquard N, Hama SY, Shih D, Grijalva VR, Navab M, Fogelman AM, Reddy ST (2007) Adenovirus-mediated expression of human paraoxonase 3 protects against the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 27:1368–1374

    Article  PubMed  CAS  Google Scholar 

  21. Hu Q, Zhang XJ, Zhang C, Zhao YX, He H, Liu CX, Feng JB, Jiang H, Yang FL, Zhang CX, Zhang Y (2008) Peroxisome proliferator-activated receptor-gamma1 gene therapy attenuates atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Hum Gene Ther 19:287–299

    Article  PubMed  CAS  Google Scholar 

  22. Tangirala RK, Tsukamoto K, Chun SH, Usher D, Pure E, Rader DJ (1999) Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation 100:1816–1822

    Article  PubMed  CAS  Google Scholar 

  23. Tsukamoto K, Tangirala R, Chun SH, Pure E, Rader DJ (1999) Rapid regression of atherosclerosis induced by liver-directed gene transfer of ApoE in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19:2162–2170

    Article  PubMed  CAS  Google Scholar 

  24. Harris JD, Graham IR, Schepelmann S, Stannard AK, Roberts ML, Hodges BL, Hill V, Amalfitano A, Hassall DG, Owen JS, Dickson G (2002) Acute regression of advanced and retardation of early aortic atheroma in immunocompetent apolipoprotein-E (apoE) deficient mice by administration of a second generation [E1(−), E3(−), polymerase(−)] adenovirus vector expressing human apoE. Hum Mol Genet 11:43–58

    Article  PubMed  CAS  Google Scholar 

  25. Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA (2002) Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 76:4580–4590

    Article  PubMed  CAS  Google Scholar 

  26. Goncalves MA (2005) Adeno-associated virus: from defective virus to effective vector. Virol J 2:43

    Article  PubMed  Google Scholar 

  27. Koeberl DD, Alexander IE, Halbert CL, Russell DW, Miller AD (1997) Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA 94:1426–1431

    Article  PubMed  CAS  Google Scholar 

  28. Herzog RW, Hagstrom JN, Kung SH, Tai SJ, Wilson JM, Fisher KJ, High KA (1997) Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA 94:5804–5809

    Article  PubMed  CAS  Google Scholar 

  29. Snyder RO, Miao CH, Patijn GA, Spratt SK, Danos O, Nagy D, Gown AM, Winther B, Meuse L, Cohen LK, Thompson AR, Kay MA (1997) Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 16:270–276

    Article  PubMed  CAS  Google Scholar 

  30. Nakai H, Herzog RW, Hagstrom JN, Walter J, Kung SH, Yang EY, Tai SJ, Iwaki Y, Kurtzman GJ, Fisher KJ, Colosi P, Couto LB, High KA (1998) Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91:4600–4607

    PubMed  CAS  Google Scholar 

  31. Wang L, Takabe K, Bidlingmaier SM, Ill CR, Verma IM (1999) Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA 96:3906–3910

    Article  PubMed  CAS  Google Scholar 

  32. Yang XP, Yan D, Qiao C, Liu RJ, Chen JG, Li J, Schneider M, Lagrost L, Xiao X, Jiang XC (2003) Increased atherosclerotic lesions in apoE mice with plasma phospholipid transfer protein overexpression. Arterioscler Thromb Vasc Biol 23:1601–1607

    Article  PubMed  CAS  Google Scholar 

  33. Lebherz C, Gao G, Louboutin JP, Millar J, Rader D, Wilson JM (2004) Gene therapy with novel adeno-associated virus vectors substantially diminishes atherosclerosis in a murine model of familial hypercholesterolemia. J Gene Med 6:663–672

    Article  PubMed  CAS  Google Scholar 

  34. Kitajima K, Marchadier DH, Miller GC, Gao GP, Wilson JM, Rader DJ (2006) Complete prevention of atherosclerosis in apoE-deficient mice by hepatic human apoE gene transfer with adeno-associated virus serotypes 7 and 8. Arterioscler Thromb Vasc Biol 26:1852–1857

    Article  PubMed  CAS  Google Scholar 

  35. Kitajima K, Marchadier DH, Burstein H, Rader DJ (2006) Persistent liver expression of murine apoA-l using vectors based on ­adeno-associated viral vectors serotypes 5 and 1. Atherosclerosis 186:65–73

    Article  PubMed  CAS  Google Scholar 

  36. Lebherz C, Sanmiguel J, Wilson JM, Rader DJ (2007) Gene transfer of wild-type apoA-I and apoA-I milano reduce atherosclerosis to a similar extent. Cardiovasc Diabetol 6:15

    Article  PubMed  Google Scholar 

  37. Tanigawa H, Billheimer JT, Tohyama J, Zhang Y, Rothblat G, Rader DJ (2007) Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 116:1267–1273

    Article  PubMed  CAS  Google Scholar 

  38. Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149:754–756

    Article  PubMed  CAS  Google Scholar 

  39. Dai J, Rabie AB (2007) The use of recombinant adeno-associated virus for skeletal gene therapy. Orthod Craniofac Res 10:1–14

    Article  PubMed  Google Scholar 

  40. Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ, Calcedo R, Sanmiguel J, Abbas Z, Wilson JM (2003) Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci USA 100:6081–6086

    Article  PubMed  CAS  Google Scholar 

  41. Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M, Berns KI (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 87:2211–2215

    Article  PubMed  CAS  Google Scholar 

  42. Schnepp BC, Jensen RL, Chen CL, Johnson PR, Clark KR (2005) Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 79:14793–14803

    Article  PubMed  CAS  Google Scholar 

  43. Kotin RM (1994) Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 5:793–801

    Article  PubMed  CAS  Google Scholar 

  44. Sanlioglu S, Monick MM, Luleci G, Hunninghake GW, Engelhardt JF (2001) Rate limiting steps of AAV transduction and implications for human gene therapy. Curr Gene Ther 1:137–147

    Article  PubMed  CAS  Google Scholar 

  45. Chirmule N, Truneh A, Haecker SE, Tazelaar J, Gao G, Raper SE, Hughes JV, Wilson JM (1999) Repeated administration of adenoviral vectors in lungs of human CD4 transgenic mice treated with a nondepleting CD4 antibody. J Immunol 163:448–455

    PubMed  CAS  Google Scholar 

  46. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, Samulski RJ (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76:791–801

    Article  PubMed  CAS  Google Scholar 

  47. Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40

    Article  PubMed  CAS  Google Scholar 

  48. Gao G, Vandenberghe LH, Wilson JM (2005) New recombinant serotypes of AAV vectors. Curr Gene Ther 5:285–297

    Article  PubMed  CAS  Google Scholar 

  49. Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L, Figueredo J, Lock M, Wilson JM (2006) Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther 13:77–87

    Article  PubMed  CAS  Google Scholar 

  50. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16:1073–1080

    Article  PubMed  CAS  Google Scholar 

  51. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA, Nakai H (2006) Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 14:45–53

    Article  PubMed  CAS  Google Scholar 

  52. Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE, Zolotukhin I, Tarantal AF, Byrne BJ (2006) Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 99:e3–e9

    Article  PubMed  CAS  Google Scholar 

  53. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 99:11854–11859

    Article  PubMed  CAS  Google Scholar 

  54. Hildinger M, Auricchio A, Gao G, Wang L, Chirmule N, Wilson JM (2001) Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J Virol 75:6199–6203

    Article  PubMed  CAS  Google Scholar 

  55. Hayashi Y, Mori Y, Janssen OE, Sunthornthepvarakul T, Weiss RE, Takeda K, Weinberg M, Seo H, Bell GI, Refetoff S (1993) Human thyroxine-binding globulin gene: complete sequence and transcriptional regulation. Mol Endocrinol 7:1049–1060

    Article  PubMed  CAS  Google Scholar 

  56. Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72:2224–2232

    PubMed  CAS  Google Scholar 

  57. Wright JF (2008) Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 15:840–848

    Article  PubMed  CAS  Google Scholar 

  58. Cecchini S, Negrete A, Kotin RM (2008) Toward exascale production of recombinant adeno-associated virus for gene transfer applications. Gene Ther 15:823–830

    Article  PubMed  CAS  Google Scholar 

  59. Van Vliet KM, Blouin V, Brument N, Agbandje-McKenna M, Snyder RO (2008) The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol 437:51–91

    Article  PubMed  Google Scholar 

  60. Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1:1412–1428

    Article  PubMed  CAS  Google Scholar 

  61. Qu G, Bahr-Davidson J, Prado J, Tai A, Cataniag F, McDonnell J, Zhou J, Hauck B, Luna J, Sommer JM, Smith P, Zhou S, Colosi P, High KA, Pierce GF, Wright JF (2007) Separation of adeno-associated virus type 2 empty particles from genome containing vectors by anion-exchange column chromatography. J Virol Methods 140:183–192

    Article  PubMed  CAS  Google Scholar 

  62. Grieger JC, Samulski RJ (2005) Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Adv Biochem Eng Biotechnol 99:119–145

    PubMed  CAS  Google Scholar 

  63. Nakai H, Thomas CE, Storm TA, Fuess S, Powell S, Wright JF, Kay MA (2002) A limited number of transducible hepatocytes restricts a wide-range linear vector dose response in recombinant adeno-associated virus-mediated liver transduction. J Virol 76:11343–11349

    Article  PubMed  CAS  Google Scholar 

  64. Dodge JC, Clarke J, Passini MA, Song A, O’Riordan CR, Cheng SH, Stewart GR (2005) 497. Sex and estrous cycle stage influence the efficiency of AAV-mediated gene transfer in the rodent brain. Mol Ther 11:S192–S193

    Article  Google Scholar 

  65. Davidoff AM, Ng CY, Zhou J, Spence Y, Nathwani AC (2003) Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood 102:480–488

    Article  PubMed  CAS  Google Scholar 

  66. Berraondo P, Crettaz J, Ochoa L, Paneda A, Prieto J, Troconiz IF, Gonzalez-Aseguinolaza G (2006) Intrahepatic injection of recombinant adeno-associated virus serotype 2 overcomes gender-related differences in liver transduction. Hum Gene Ther 17:601–610

    Article  PubMed  CAS  Google Scholar 

  67. Voutetakis A, Zheng C, Wang J, Goldsmith CM, Afione S, Chiorini JA, Wenk ML, Vallant M, Irwin RD, Baum BJ (2007) Gender differences in serotype 2 adeno-associated virus biodistribution after administration to rodent salivary glands. Hum Gene Ther 18:1109–1118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Anne Douar at Genethon for her contributions to the genome titer assay method. We would also like to acknowledge Peter Bell who kindly provided the electron micrograph image of AAV shown in Fig. 1.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lagor, W.R., Johnston, J.C., Lock, M., Vandenberghe, L.H., Rader, D.J. (2013). Adeno-associated Viruses as Liver-Directed Gene Delivery Vehicles: Focus on Lipoprotein Metabolism. In: Freeman, L. (eds) Lipoproteins and Cardiovascular Disease. Methods in Molecular Biology, vol 1027. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-369-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-369-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-368-8

  • Online ISBN: 978-1-60327-369-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics