Skip to main content

Genetic Engineering of Novel Flower Colors in Floricultural Plants: Recent Advances via Transgenic Approaches

  • Protocol
  • First Online:
Protocols for In Vitro Propagation of Ornamental Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 589))

Abstract

Since the first successful genetic engineering of flower color in petunia, several new techniques have been developed and applied to modify flower color not only in model plants but also in floricultural plants. A typical example is the commercial violet-flowered carnation “Moondust series” developed by Suntry Ltd. and Florigene Ltd. More recently, blue-flowered roses have been successfully produced and are expected to be commercially available in the near future. In recent years, successful modification of flower color by sophisticated regulation of flower-pigment metabolic pathways has become possible. In this chapter, we review recent advances in flower color modification by genetic engineering, especially focusing on the methodology. We have included our own recent results on successful production of flower-color-modified transgenic plants in a model plant, tobacco and an ornamental plant, gentian. Based on these results, genetic engineering of flower color for improvement of floricultural plants is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217

    Google Scholar 

  2. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    CAS  PubMed  Google Scholar 

  3. Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285

    CAS  PubMed  Google Scholar 

  4. Goodwin TW (ed) (1980) The biochemistry of the carotenoids, vol I, 2nd edn. Chapman and Hall, London

    Google Scholar 

  5. Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12

    CAS  PubMed  Google Scholar 

  6. Grotewold E (ed) (2006) The science of flavonoids. Springer, London

    Google Scholar 

  7. Britton G, Liaaen-Jensen S, Pfander H (eds) (2004) Carotenoids handbook. Birkhäuser, Basel

    Google Scholar 

  8. Andersen OM, Markham KR (eds) (2006) Flavonoids: Chemistry, biochemistry and applications. CRC, Boca Raton, FL

    Google Scholar 

  9. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochem 62:247–269

    CAS  Google Scholar 

  10. Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    CAS  PubMed  Google Scholar 

  11. Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    CAS  PubMed  Google Scholar 

  12. Springob K, Nakajima J, Yamazaki M, Saito K (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep 20:288–303

    CAS  PubMed  Google Scholar 

  13. Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    CAS  PubMed  Google Scholar 

  14. Dixon RA (2005) Engineering of plant natural product pathways. Curr Opin Plant Biol 8:329–336

    CAS  PubMed  Google Scholar 

  15. Yu O, Matsuno M, Subramanian S (2006) Flavonoid compounds in flowers: genetics and biochemistry. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: Advances and topical. Global Science Books, London, pp 282–292

    Google Scholar 

  16. Jackson JF, Linskens HF (2003) Genetic transformation of plants. Springer, Berlin

    Google Scholar 

  17. Chandler S, Tanaka Y (2007) Genetic modification in floriculture. Crit Rev Plant Sci 26:169–197

    CAS  Google Scholar 

  18. Shibata M (2008) Importance of genetic transformation in ornamental plant breeding. Plant Biotech 25:3–8

    Google Scholar 

  19. Teixeira da Silva JA (2003) Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotech Adv 21:715–766

    CAS  Google Scholar 

  20. Hosokawa K, Matsuki R, Oikawa Y, Yamamura S (2000) Production of transgenic gentian plants by particle bombardment of suspension-culture cells. Plant Cell Rep 19:454–458

    CAS  Google Scholar 

  21. Mishiba K, Nishihara M, Abe Y, Nakatsuka T, Kawamura H, Kodama K, Takesawa T, Abe J, Yamamura S (2006) Production of dwarf ­potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotech 23:33–38

    CAS  PubMed  Google Scholar 

  22. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678

    CAS  PubMed  Google Scholar 

  23. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotech 12:155–160

    CAS  PubMed  Google Scholar 

  24. Tanaka Y, Tsuda S, Kusumi T (1998) Metabolic engineering to modify flower color. Plant Cell Physiol 39:1119–1126

    CAS  Google Scholar 

  25. Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tiss Org Cult 80:1–24

    CAS  Google Scholar 

  26. Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotech 19:190–197

    CAS  PubMed  Google Scholar 

  27. To KY, Wang CK (2006) Molecular breeding of flower color. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: Advances and topical. Global Science Books, London, pp 300–310

    Google Scholar 

  28. Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201

    CAS  PubMed  Google Scholar 

  29. Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, Yamamura S (2007) Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep 26:951–959

    CAS  PubMed  Google Scholar 

  30. Chahal GS, Gosal SS (eds) (2002) Principles and procedures of plant breeding: biotechnological and conventional approaches. Alpha Science International Ltd, Pangbourne

    Google Scholar 

  31. Brown J, Caligari P (eds) (2008) An introduction to plant breeding. Blackwell Publishing, Oxford

    Google Scholar 

  32. Sasaki K, Aida R, Niki T, Yamaguchi H, Narumi T, Nishijima T, Hayashi T, Ryuto H, Fukunishi T, Abe T, Ohtsubo N (2008) High-efficiency improvement of transgenic torenia flowers by ion beam irradiation. Plant Biotech 25:81–89

    CAS  Google Scholar 

  33. Nishihara M, Nakatsuka T, Hosokawa K, Yokoi T, Abe Y, Mishiba K, Yamamura S (2006) Dominant inheritance of white-flowered and herbicide-resistant traits in trangenic gentian plants. Plant Biotech 23:25–31

    CAS  Google Scholar 

  34. Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3’, 5’-hydroxylase gene. Phytochem 63:15–23

    CAS  Google Scholar 

  35. Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    CAS  PubMed  Google Scholar 

  36. Kikuchi A, Watanabe K, Tanaka Y, Kamada H (2008) Recent progress on environmental biosafety assessment of genetically modified trees and floricultural plants in Japan. Plant Biotech 25:9–15

    Google Scholar 

  37. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    CAS  PubMed  Google Scholar 

  38. Shimada S, Takahashi K, Sato Y, Sakuta M (2004) Dihydroflavonol 4-reductase cDNA from non-anthocyanin-producing species in the Caryophyllales. Plant Cell Physiol 45:1290–1298

    CAS  PubMed  Google Scholar 

  39. Shimada S, Inoue YT, Sakuta M (2005) Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species. Plant J 44:950–959

    CAS  PubMed  Google Scholar 

  40. Hieber AD, Mudalige-Jayawickrama RG, Kuehnle AR (2006) Color genes in the orchid Oncidium Gower Ramsey: identification, expression, and potential genetic instability in an interspecific cross. Planta 223:521–531

    CAS  PubMed  Google Scholar 

  41. Hoshi Y, Kondo M, Mori S, Adachi Y, Nakano M, Kobayashi H (2004) Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep 22:359–364

    CAS  PubMed  Google Scholar 

  42. Ogaki M, Furuichi Y, Kuroda K, Chin DP, Ogawa Y, Mii M (2008) Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium x formolongi. Plant Cell Rep 27:699–705

    CAS  PubMed  Google Scholar 

  43. Liau CH, You SJ, Prasad V, Hsiao HH, Lu JC, Yang NS, Chan MT (2003) Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep 21:993–998

    CAS  PubMed  Google Scholar 

  44. Chan MT, Chan YL, Sanjaya (2006) Orchids (Cymbidium spp., Oncidium, and Phalaenopsis). Methods Mol Biol 344:331–338

    Google Scholar 

  45. van der Krol AR, Lentlng PJ, Veenstra JG, van der Meer IM, Koes RE, Gerats AGM, MOI JNM, Stuitje AR (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869

    Google Scholar 

  46. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    CAS  PubMed  Google Scholar 

  47. van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    PubMed  Google Scholar 

  48. Fukusaki E, Kawasaki K, Kajiyama S, An CI, Suzuki K, Tanaka Y, Kobayashi A (2004) Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J Biotech 111:229–240

    CAS  Google Scholar 

  49. Nishihara M, Nakatsuka T, Yamamura S (2005) Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett 579:6074–6078

    CAS  PubMed  Google Scholar 

  50. Nakamura N, Fukuchi-Mizutani M, Miyazaki K, Suzuki K, Tanaka Y (2006) RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotech 23:13–18

    CAS  Google Scholar 

  51. Tanaka Y, Nakamura N, Togami J (2008) Altering flower color in transgenic plants by RNAi-mediated engineering of flavonoid biosynthetic pathway. Methods Mol Biol 442:245–257

    CAS  PubMed  Google Scholar 

  52. Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E, Robinson KE (1994) Modification of flower color in florist’s chrysanthemum: production of a white-flowering variety through molecular genetics. Bio/technology 12:268–271

    Google Scholar 

  53. Elomaa P, Honkanen J, Puska R, Seppanen P, Helariutta P, Mehto M, Kotilainen M, Nevalainen L, Teeri TH (1993) Agro­bacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/Technology 11:508–511

    CAS  Google Scholar 

  54. Deroles S, Bradley M, Davies KM, Schwinn KE, Manson DG (1995) Generation of novel patterns in lisianthus flowers using an antisense chalcone synthase gene. Acta Hortic 420:26–28

    CAS  Google Scholar 

  55. Aida R, Kishimoto S, Tanaka Y, Shibata M (2000) Modification of flower colour in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Sci 153:33–42

    CAS  Google Scholar 

  56. Suzuki K, Xue H, Tanaka Y, Fukui Y, Fukuchi-Mizutani M, Murakami Y, Katsumoto Y, Tsuda S, Kusumi T (2000) Flower color modifications of Torenia hybrida by cosuppression of anthocyanin biosynthesis genes. Mol Breed 6:239–246

    CAS  Google Scholar 

  57. Aida R, Yoshida K, Kondo T, Kishimoto S, Sibata, M (2000) Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-redutase gene. Plant Sci 160:49–56

    Google Scholar 

  58. Nakatsuka T, Mishiba K, Abe Y, Kubota A, Kakizaki Y, Yamamura S, Nishihara M (2008) Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotech 25:61–68

    CAS  Google Scholar 

  59. Tsuda S, Fukui Y, Nakamura N, Katsumoto Y, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Ohira K, Ueyama Y, Ohkawa H, Holton TA, Kusumi T, Tanaka Y (2004) Flower color modification of Petunia hybrida commercial varieties by metabolic engineering. Plant Biotech 21:377–386

    CAS  Google Scholar 

  60. Ueyama Y, Katsumoto Y, Fukui Y, Fukuchi-Mizutani M, Ohkawa H, Kusumi T, Iwashita T, Takahata Y (2006) Molecular characterization of the flavonoid biosynthetic pathway and flower color modification of Nierembergia sp. Plant Biotech 23:19–24

    CAS  Google Scholar 

  61. Mishiba K, Nishihara M, Nakatsuka T, Abe Y, Hirano H, Yokoi T, Kikuchi A, Yamamura S (2005) Consistent transcriptional silencing of 35 S-driven transgenes in gentian. Plant J 44:541–556

    CAS  PubMed  Google Scholar 

  62. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    CAS  PubMed  Google Scholar 

  63. Hanumappa M, Choi G, Ryu S, Choi G (2007) Modulation of flower colour by rationally designed dominant-negative chalcone synthase. J Exp Bot 58:2471–2478

    CAS  PubMed  Google Scholar 

  64. Helariutta Y, Elomaa P, Kotilainen M, Seppanen P, Teeri TH (1993) Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina (Compositae). Plant Mol Biol 22:183–193

    CAS  PubMed  Google Scholar 

  65. Tanaka Y, Fukui Y, Fukuchi-Mizutani M, Holton TA, Higgins E, Kusumi T (1995) Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene. Plant Cell Physiol 36:1023–1031

    CAS  PubMed  Google Scholar 

  66. Shimada Y, Nakano-Shimada R, Ohbayashi M, Okinaka Y, Kiyokawa S, Kikuchi Y (1999) Expression of chimeric P450 genes encoding flavonoid-3’, 5’-hydroxylase in transgenic tobacco and petunia plants. FEBS Lett 461:241–245

    CAS  PubMed  Google Scholar 

  67. Okinaka Y, Shimada Y, Nakano-Shimada R, Ohbayashi M, Kiyokawa S, Kikuchi Y (2003) Selective accumulation of delphinidin derivatives in tobacco using a putative flavonoid 3’, 5’-hydroxylase cDNA from Campanula medium. Biosci Biotech Biochem 67:161–165

    CAS  Google Scholar 

  68. Schwinn KE, Davies KM, Deroles SC, Markham KR, Miller RM, Bradley JM, Manson DG, Given NK (1997) Expression of an Antirrhinum majus UDP-glucose:flavonoid-3-O-glucosyltransferase transgene alters flavonoid glycosylation and acylation in lisianthus (Eustoma grandiflorum Grise.). Plant Sci 125:53–61

    CAS  Google Scholar 

  69. Nakatsuka T, Sato K, Takahashi H, Yamamura S, Nishihara M (2008) Cloning and characterization of the UDP-glucose:anthocyanin 5-O-glucosyltransferase gene from blue-flowered gentian. J Exp Bot 59:1241–1252

    CAS  PubMed  Google Scholar 

  70. Fukuchi-Mizutani M, Okuhara H, Fukui Y, Nakao M, Katsumoto Y, Yonekura-Sakakibara K, Kusumi T, Hase T, Tanaka Y (2003) Bio­chemical and molecular characterization of a novel UDP-glucose:anthocyanin 3’-O-gluco­syltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol 132:1652–1663

    CAS  PubMed  Google Scholar 

  71. Nakatsuka T, Nishihara M, Mishiba K, Yamamura S (2006) Heterologous expression of two gentian cytochrome P450 genes can modulate the intensity of flower pigmentation in transgenic tobacco plants. Mol Breed 17:91–99

    CAS  Google Scholar 

  72. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotech 19:470–474

    CAS  Google Scholar 

  73. Ueyama Y, Suzuki K, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y (2002) Molecular and biochemical characterization of torenia flavonoid 3′-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci 163:253–263

    CAS  Google Scholar 

  74. Davies KM, Bloor SJ, Spiller DB, Deroles SS (1998) Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia. Plant J 13:259–266

    CAS  Google Scholar 

  75. Shimada N, Nakatsuka T, Nishihara M, Yamamura S, Ayabe S, Aoki T (2006) Isolation and characterization of a cDNA encoding polyketide reductase in Lotus japonicus. Plant Biotech 23:509–513

    CAS  Google Scholar 

  76. Seitz C, Vitten M, Steinbach P, Hartl S, Hirsche J, Rathje W, Treutter D, Forkmann G (2007) Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochemistry 68:824–833

    CAS  PubMed  Google Scholar 

  77. Nakayama T, Yonekura-Sakakibara K, Sato T, Kikuchi S, Fukui Y, Fukuchi-Mizutani M, Ueda T, Nakao M, Tanaka Y, Kusumi T, Nishino T (2000) Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163–1166

    CAS  PubMed  Google Scholar 

  78. Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Nat Acad Sci USA 103:11075–11080

    Google Scholar 

  79. Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M (2007) Production of red-flowered plants by genetic engineering of multiple flavo­noid biosynthetic genes. Plant Cell Rep 26:1951–1959

    CAS  PubMed  Google Scholar 

  80. Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913

    CAS  PubMed  Google Scholar 

  81. Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotech 23:890–895

    CAS  Google Scholar 

  82. Nakatsuka T, Pitaksutheepong C, Yamamura S, Nishihara M (2007) Induction of differential flower pigmentation patterns by RNAi using promoters with distinct tissue-specific activity. Plant Biotech Rep 1:251–257

    Google Scholar 

  83. Kobayashi H, Oikawa Y, Koiwa H, Yamamura S (1998) Flower-specific expression directed by the promoter of a chalcone synthase gene from Gentiana triflora in Petunia hybrida. Plant Sci 131:173–180

    CAS  Google Scholar 

  84. Koseki M, Goto K, Masuta C, Kanazawa A (2005) The star-type color pattern in Petunia hybrida ‘red Star’ flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Physiol 46:1879–1883

    CAS  PubMed  Google Scholar 

  85. Nishihara M, Nakatsuka T, Mizutani-Fukuchi M, Tanaka Y, Yamamura S (2008) Gentians: From gene cloning to molecular breeding. In: Teixeira da Silva JA (ed) Floricultural and ornamental biotechnology V. Global Science Books, London, pp 57–67

    Google Scholar 

  86. Quattrocchio F, Baudry A, Lepiniec L, Grotewold E (2006) The regulation of flavonoid biosynthesis. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 97–122

    Google Scholar 

  87. Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7:202–209

    CAS  PubMed  Google Scholar 

  88. Bradley JM, Davies KM, Deroles SC, Bloor SJ, Lewis DH (1998) The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J 13:381–392

    CAS  Google Scholar 

  89. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    CAS  PubMed  Google Scholar 

  90. Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775

    CAS  PubMed  Google Scholar 

  91. Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    CAS  PubMed  Google Scholar 

  92. Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    CAS  PubMed  Google Scholar 

  93. Ben Zvi MM, Negre-Zakharov F, Masci T, Ovadis M, Shklarman E, Ben-Meir H, Tzfira T, Dudareva N, Vainstein A (2008) Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnol J 6:403–415

    Google Scholar 

  94. Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    CAS  PubMed  Google Scholar 

  95. Matsui K, Tanaka H, Ohme-Takagi M (2004) Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor. Plant Biotech J 2:487–493

    CAS  Google Scholar 

  96. Mitsuda N, Hiratsu K, Todaka D, Nakashima K, Yamaguchi-Shinozaki K, Ohme-Takagi M (2006) Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Plant Biotech J 4:325–332

    CAS  Google Scholar 

  97. Narumi T, Aida R, Niki T, Nishijima T, Mitsuda N, Hiratsu K, Ohme-Takagi M, Ohtsubo N (2008) Chimeric AGAMOUS repressor induces serrated petal phenotype in Torenia fournieri similar to that induced by cytokinin application. Plant Biotech 25:45–54

    CAS  Google Scholar 

  98. Mitsuda N, Umemura Y, Ikeda M, Shikata M, Koyama T, Matsui K, Narumi T, Aida R, Sasaki K, Hiyama T, Higuchi T, Ono M, Isuzugawa K, Saitoh K, Endo R, Ikeda K, Nakatsuka T, Nishihara M, Yamamura S,Yamamura T, Terakawa T, Ohtsubo N, Ohme-Takagi M (2008) FioreDB: a database of phenotypic information induced by the chimeric repressor silencing technology (CRES-T) in Arabidopsis and floricultural plants. Plant Biotech 25:37–44

    CAS  Google Scholar 

  99. Howitt CA, Pogson BJ (2006) Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ 29:435–445

    CAS  PubMed  Google Scholar 

  100. Nielsen KM, Lewis DH, Morgan ER (2003) Characterization of carotenoid pigments and their biosynthesis in two yellow flowered lines of Sandersonia aurantiaca (Hook). Euphytica 130:25–34

    CAS  Google Scholar 

  101. Kishimoto S, Maoka T, Sumitomo K, Ohmiya A (2005) Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.). Biosci Biotech Biochem 69:2122–2128

    CAS  Google Scholar 

  102. Kishimoto S, Maoka T, Nakayama M, Ohmiya A (2004) Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Phytochem 65:2781–2787

    CAS  Google Scholar 

  103. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    CAS  PubMed  Google Scholar 

  104. Giuliano G, Bartley GE, Scolnik PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379–387

    CAS  PubMed  Google Scholar 

  105. Bramley PM (2002) Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot 53:2107–2113

    CAS  PubMed  Google Scholar 

  106. Yonekura-Sakakibara K, Saito K (2006) Review: Genetically modified plants for the promotion of human health. Biotech Lett 28:1983–1991

    CAS  Google Scholar 

  107. Sandmann G, Romer S, Fraser PD (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng 8:291–302

    CAS  PubMed  Google Scholar 

  108. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    CAS  PubMed  Google Scholar 

  109. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotech 23:482–487

    CAS  Google Scholar 

  110. Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 56:81–89

    CAS  PubMed  Google Scholar 

  111. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2:e350

    PubMed  Google Scholar 

  112. Moehs CP, Tian L, Osteryoung KW, Dellapenna D (2001) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol 45:281–293

    CAS  PubMed  Google Scholar 

  113. Del Villar-Martinez AA, Garcia-Saucedo PA, Carabez-Trejo A, Cruz-Hernandez A, Paredes-Lopeza O (2005) Carotenogenic gene expression and ultrastructural changes during development in marigold. J Plant Physiol 162:1046–1056

    PubMed  Google Scholar 

  114. Zhu C, Yamamura S, Koiwa H, Nishihara M, Sandmann G (2002) cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea. Plant Mol Biol 48:277–285

    CAS  PubMed  Google Scholar 

  115. Zhu C, Yamamura S, Nishihara M, Koiwa H, Sandmann G (2003) cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development. Biochim Biophys Acta 1625:305–308

    CAS  PubMed  Google Scholar 

  116. Zhu C, Kauder F, Romer S, Sandmann G (2006) Cloning of two individual cDNAs encoding 9-cis-epoxycarotenoid dioxygenase from Gentiana lutea, their tissue-specific expression and physiological effect in transgenic tobacco. J Plant Physiol 164:195–204

    PubMed  Google Scholar 

  117. Simkin AJ, Moreau H, Kuntz M, Pagny G, Lin C, Tanksley S, McCarthy J (2008) An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. J Plant Physiol 165:1087–1106

    Google Scholar 

  118. Castillo R, Fernandez JA, Gomez-Gomez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol 139:674–689

    CAS  PubMed  Google Scholar 

  119. Zhu C, Gerjets T, Sandmann G (2007) Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene. Transgenic Res 16:813–821

    CAS  PubMed  Google Scholar 

  120. Gerjets T, Sandmann M, Zhu C, Sandmann G (2007) Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species. Biotech J 2:1263–1269

    CAS  Google Scholar 

  121. Mann V, Harker M, Pecker I, Hirschberg J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotech 18:888–892

    CAS  Google Scholar 

  122. Hattori K (1991) Inheritance of carotenoid pigmentation in flower color of chrysanthemum. Jpn J Breed 41:1–9

    CAS  Google Scholar 

  123. Simkin AJ, Underwood BA, Auldridge M, Loucas HM, Shibuya K, Schmelz E, Clark DG, Klee HJ (2004) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136:3504–3514

    CAS  PubMed  Google Scholar 

  124. Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67

    CAS  PubMed  Google Scholar 

  125. Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Kupper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18:3594–3605

    CAS  PubMed  Google Scholar 

  126. Yano K, Aoki K, Shibata D (2007) Genomic databases for tomato. Plant Biotech 24:17–25

    CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Ministry of Education, Science, Sports, and Culture, Grant-in-Aid for Scientific Research (C) (no. 18580010) and Young Scientists (B) (no. 18789005). We thank Drs S. Mohan Jain and S. J. Ochatt for providing us with the opportunity to write this review. We also thank Dr Y. Tanaka (Suntry Ltd, Japan) for providing information about literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Nishihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nishihara, M., Nakatsuka, T. (2010). Genetic Engineering of Novel Flower Colors in Floricultural Plants: Recent Advances via Transgenic Approaches. In: Jain, S., Ochatt, S. (eds) Protocols for In Vitro Propagation of Ornamental Plants. Methods in Molecular Biology, vol 589. Humana Press. https://doi.org/10.1007/978-1-60327-114-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-114-1_29

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-390-9

  • Online ISBN: 978-1-60327-114-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics