Skip to main content

Identification of SUMO-Interacting Proteins by Yeast Two-Hybrid Analysis

  • Protocol
SUMO Protocols

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 497))

Abstract

This chapter will discuss various adaptations of the yeast two-hybrid method for analyzing protein interactions that can be used to identify small ubiquitin-related modifier (SUMO) interacting proteins and to determine the nature of the SUMO—protein interactions that occur. SUMO binds to a protein in two different ways: covalently and noncovalently. In a covalent interaction an isopeptide bond forms between the glycine residue at the C terminus of the mature SUMO and a lysine side-chain on the substrate protein. Alternatively, SUMO can interact noncovalently with another protein, usually via insertion of a β strand from a substrate SUMO-interacting motif (SIM) into a hydrophobic groove next to the SUMO β2 strand. By mutating either the C-terminal diglycine motif or amino acids within the β2 strand of SUMO, these respective interactions can be abolished. The expression of the two-hybrid SUMO constructs with either of these mutations can help distinguish the type of interaction that occurs between a SUMO and a given protein. Sumoylation can be verified by independent methods, such as a SUMO mobility shift assay. Finally, the chapter will compare the two-hybrid approach with mass spectrometric analysis as a means of identifying SUMO-interacting proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., et al. (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J. Immunol. 157, 4277–4281.

    PubMed  CAS  Google Scholar 

  2. Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K., and Chen, D. J. (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/ RAD52 proteins. Genomics 36, 271–279.

    Article  PubMed  CAS  Google Scholar 

  3. Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. (1996) PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promy-elocytic leukaemia. Oncogene 13, 971–982.

    PubMed  CAS  Google Scholar 

  4. Matunis, M. J., Coutavas, E., and Blobel, G. (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470.

    Article  PubMed  CAS  Google Scholar 

  5. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997) A small ubiqui-tin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.

    Article  PubMed  CAS  Google Scholar 

  7. Schwartz, D. C. and Hochstrasser, M. (2003) A superfamily of protein tags: ubiq-uitin, SUMO and related modifiers. Trends Biochem. Sci. 28, 321–328.

    Article  PubMed  CAS  Google Scholar 

  8. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  9. Hannich, J. T., Lewis, A., Kroetz, M. B., Li, S. J., Heide, H., Emili, A., et al. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cer-evisiae. J. Biol. Chem. 280, 4102–4110.

    Article  PubMed  CAS  Google Scholar 

  10. Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P., and Dikic, I. (2006) Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127.

    Article  PubMed  CAS  Google Scholar 

  11. James, P., Halladay, J., and Craig, E. A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.

    PubMed  CAS  Google Scholar 

  12. Guthrie, C. and Fink G. R. (1991) Guide to Yeast Genetics and Molecular Biology Academic Press, San Diego, CA.

    Google Scholar 

  13. Li, S. J. and Hochstrasser, M. (2003) The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J. Cell Biol. 160, 1069–1081.

    Article  PubMed  CAS  Google Scholar 

  14. Storms, R. K., Holowachuck, E. W., and Friesen, J. D. (1981) Genetic complementation of the Saccharomyces cerevisiae leu2 gene by the Escherichia coli leuB gene. Mol. Cell Biol. 1, 836–842.

    PubMed  CAS  Google Scholar 

  15. Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G., and Chen, Y. (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101, 14373–14378.

    Article  PubMed  CAS  Google Scholar 

  16. Li, S. J. and Hochstrasser, M. (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell Biol. 20, 2367–2377.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson, E. S., Schwienhorst, I., Dohmen, R. J., and Blobel, G. (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519.

    Article  PubMed  CAS  Google Scholar 

  18. Song, J., Zhang, Z., Hu, W., and Chen, Y. (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280, 40122–40129.

    Article  PubMed  CAS  Google Scholar 

  19. Reverter, D. and Lima, C. D. (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687–692.

    Article  PubMed  CAS  Google Scholar 

  20. Lin, D. Y., Huang, Y. S., Jeng, J. C., Kuo, H. Y., Chang, C. C., Chao, T. T., et al. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354.

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi, H., Hatakeyama, S., Saitoh, H., and Nakayama, K. I. (2005) Noncova-lent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J. Biol. Chem. 280, 5611–5621. 22. Kerscher, O. (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555.

    Article  PubMed  CAS  Google Scholar 

  22. Kerscher, O. (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555.

    Article  PubMed  CAS  Google Scholar 

  23. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Séraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 17, 1030–1032.

    Article  PubMed  CAS  Google Scholar 

  24. Xu, P. and Peng, J. (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim. Biophys. Acta 1764, 1940–1947.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Rachael Felberbaum and Dan Su for critical reading of the manuscript. This work was supported by NIH grant GM053756.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kroetz, M.B., Hochstrasser, M. (2009). Identification of SUMO-Interacting Proteins by Yeast Two-Hybrid Analysis. In: Ulrich, H.D. (eds) SUMO Protocols. METHODS IN MOLECULAR BIOLOGY™, vol 497. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-566-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-566-4_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-80-0

  • Online ISBN: 978-1-59745-566-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics