Skip to main content

Positional Cloning of Deafness Genes

  • Protocol
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 493))

Abstract

The identification of the majority of the known causative genes involved in nonsyndromic sensorineural hearing loss (NSHL) started with linkage analysis as part of a positional cloning procedure. The human and mouse genome projects in combination with technical developments on genotyping, transcriptomics, proteomics, and the creation of animal models have greatly enhanced the speed of disease gene identification. In the present chapter, we first discuss the possibilities for exclusion of known NSHL loci and genes. Subsequently, methods are described to determine the genomic regions that contain the genetic defects. These include linkage analysis with genotyping and statistical evaluation and the determination of copy number variations. In the case of a large genomic region, candidate genes are selected and prioritized using gene expression analysis, protein network data, and phenotypes of animal models. A number of algorithms are described to automate the process of candidate gene selection. The novel high-throughput sequencing techniques might make gene selection and prioritization unnecessary in the near future. Once genetic variants are identified, questions on pathogenicity need to be addressed, which is the topic of the last section of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morton, N. E. (1991) Genetic epidemiology of hearing impairment. Ann. NY Acad. Sci. 630, 16–31.

    Article  CAS  PubMed  Google Scholar 

  2. Cremers, F. P. M., Kimberling, W. J., Kuelm, M., de Brouwer, A. P., van Wijk, E., te Brinke, H. et al. (2007) Development of a genotyping microarray for Usher syndrome. J. Med. Genet. 44, 153–160.

    Article  CAS  PubMed  Google Scholar 

  3. Gardner, P., Oitmaa, E., Messner, A., Hoefsloot, L., Metspalu, A., and Schrijver, I. (2006) Simultaneous multigene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray: a new approach for newborn screening follow-up. Pediatrics 118, 985–994.

    Article  PubMed  Google Scholar 

  4. Huygen, P. L. M., Pennings, R. J. E., and Cremers, C. W. R. J. (2003) Characterising and distinguishing progressive phenotypes in nonsyndromic autosomal dominant hearing impairment. Audiol. Med. 1, 37–46.

    Article  Google Scholar 

  5. Huygen, P. L. M., Pauw, R. J., and Cremers, C. W. R. J. (2007) Audiometric profiles associated with genetic non-syndromal hearing impairment: a review and phenotype analysis, in Genes, Hearing and Deafness: From Molecular Biology to Clinical Practice (Martini, A., Stephens, D., Read, A. P., eds.) Informa Healthcare, New York, NY, pp. 185–204.

    Google Scholar 

  6. Everett, L. A., Glaser, B., Beck, J. C., Idol, J. R., Buchs, A., Heyman, M. et al. (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat. Genet. 17, 411–422.

    Article  CAS  PubMed  Google Scholar 

  7. Li, X. C., Everett, L. A., Lalwani, A. K., Desmukh, D., Friedman, T. B., Green, E. D. et al. (1998) A mutation in PDS causes non-syndromic recessive deafness. Nat. Genet. 18, 215–217.

    Article  CAS  PubMed  Google Scholar 

  8. Reardon, W., Coffey, R., Phelps, P. D., Luxon, L. M., Stephens, D., Kendall-Taylor, P. et al. (1997) Pendred syndrome-100 years of underascertainment? Q. J. Med. 90, 443–447.

    CAS  Google Scholar 

  9. Azaiez, H., Yang, T., Prasad, S., Sorensen, J. L., Nishimura, C. J., Kimberling, W. J. et al. (2007) Genotype-phenotype correlations for SLC26A4-related deafness. Hum. Genet. 122, 451–457.

    Article  CAS  PubMed  Google Scholar 

  10. Stinckens, C., Huygen, P. L. M., van Camp, G., and Cremers, C. W. R. J. (2002) Pendred syndrome redefined. Report of a new family with fluctuating and progressive hearing loss. Adv. Otorhinolaryngol. 61, 131–141.

    CAS  PubMed  Google Scholar 

  11. Scott, H. S., Kudoh, J., Wattenhofer, M., Shibuya, K., Berry, A., Chrast, R. et al. (2001) Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat. Genet. 27, 59–63.

    CAS  PubMed  Google Scholar 

  12. Mustapha, M., Chardenoux, S., Nieder, A., Salem, N., Weissenbach, J., El-Zir, E. et al. (1998) A sensorineural progressive autosomal recessive form of isolated deafness, DFNB13, maps to chromosome 7q34-q36. Eur. J. Hum. Genet. 6, 245–250.

    Article  CAS  PubMed  Google Scholar 

  13. Mustapha, M., Weil, D., Chardenoux, S., Elias, S., El-Zir, E., Beckmann, J. S. et al. (1999) An α-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Hum. Mol. Genet. 8, 409–412.

    Article  CAS  PubMed  Google Scholar 

  14. Naz, S., Alasti, F., Mowjoodi, A., Riazuddin, S., Sanati, M. H., Friedman, T. B. et al. (2003) Distinctive audiometric profile associated with DFNB21 alleles of TECTA. J. Med. Genet. 40, 360–363.

    Article  CAS  PubMed  Google Scholar 

  15. Smith, R. J. H., Berlin, C. I., Hejtmancik, J. F., Keats, B. J., Kimberling, W. J., Lewis, R. A. et al. (1994) Clinical diagnosis of the Usher syndromes. Usher Syndrome Consortium. Am. J. Med. Genet. 50, 32–38.

    Article  CAS  PubMed  Google Scholar 

  16. Lander, E. and Kruglyak, L. (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11, 241–247.

    Article  CAS  PubMed  Google Scholar 

  17. O’Connell, J. R. and Weeks, D. E. (1998) PedCheck: A program for identification of genotype incompatibilities in linkage analysis. Am. J. Hum. Genet. 63, 259–266.

    Article  PubMed  Google Scholar 

  18. Abecasis, G. R., Cherny, S. S., Cookson, W. O., and Cardon, L. R. (2002) Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101.

    Article  CAS  PubMed  Google Scholar 

  19. Hoffmann, K. and Lindner, T. H. (2005) easyLINKAGE-Plus–automated linkage ana\-lyses using large-scale SNP data. Bioinformatics 21, 3565–3567.

    Article  CAS  PubMed  Google Scholar 

  20. Lindner, T. H. and Hoffmann, K. (2005) easyLINKAGE: a PERL script for easy and automated two-/multi-point linkage analyses. Bioinformatics 21, 405–407.

    Article  CAS  PubMed  Google Scholar 

  21. Ruschendorf, F. and Nurnberg, P. (2005) ALOHOMORA: a tool for linkage analysis using 10 K SNP array data. Bioinformatics 21, 2123–2125.

    Article  PubMed  Google Scholar 

  22. Terwillinger, D. J. and Ott, J. (1994) Handbook for Human Genetic Linkage. Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  23. Nyholt, D. R. (2008) Principles of linkage analysis, in Statistical Genetics: Gene Mapping Through Linkage and Association (Neale, B. M., Ferreira, M. A. R., Medland, S. E., and Posthuma, D., ed.) New York: Taylor & Francis Group, pp. 113–134.

    Google Scholar 

  24. Schaid, D. J., Guenther, J. C., Christensen, G. B., Hebbring, S., Rosenow, C., Hilker, C. A. et al. (2004) Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility Loci. Am. J. Hum. Genet. 75, 948–965.

    Article  CAS  PubMed  Google Scholar 

  25. Sellick, G. S., Longman, C., Tolmie, J., Newbury-Ecob, R., Geenhalgh, L., Hughes, S. et al. (2004) Genomewide linkage searches for Mendelian disease loci can be efficiently conducted using high-density SNP genotyping arrays. Nucleic Acids Res. 32, e164.

    Article  PubMed  CAS  Google Scholar 

  26. Hehir-Kwa, J. Y., Egmont-Petersen, M., Janssen, I. M., Smeets, D., Geurts van Kessel, A., and Veltman, J. A. (2007) Genome-wide copy number profiling on high-density bacterial artificial chromosomes, single-nucleotide polymorphisms, and oligonucleotide microarrays: a platform comparison based on statistical power analysis. DNA Res. 14, 1–11.

    Article  CAS  PubMed  Google Scholar 

  27. Nannya, Y., Sanada, M., Nakazaki, K., Hosoya, N., Wang, L., Hangaishi, A. et al. (2005) A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 65, 6071–6079.

    Article  CAS  PubMed  Google Scholar 

  28. Genin, E., Todorov, A. A., and Clerget-Darpoux, F. (1998) Optimization of genome search strategies for homozygosity mapping: influence of marker spacing on power and threshold criteria for identification of candidate regions. Ann. Hum. Genet. 62, 419–429.

    CAS  PubMed  Google Scholar 

  29. den Hollander, A. I., Lopez, I., Yzer, S., Zonneveld, M. N., Janssen, I. M., Strom, T. M. et al. (2007) Identification of novel mutations in patients with Leber congenital amaurosis and juvenile RP by genome-wide homozygosity mapping with SNP microarrays. Invest. Ophthalmol. Vis. Sci. 48, 5690–5698.

    Article  Google Scholar 

  30. de Brouwer, A. P., Pennings, R. J. E., Roeters, M., Van Hauwe, P., Astuto, L. M., Hoefsloot, L. H. et al. (2003) Mutations in the calcium-binding motifs of CDH23 and the 35delG mutation in GJB2 cause hearing loss in one family. Hum. Genet. 112, 156–163.

    PubMed  Google Scholar 

  31. Lezirovitz, K., Pardono, E., de Mello Auricchio, M. T. B., de Carvalho e Silva, F. L., Lopes, J. J., Abreu-Silva, R. S. et al. (2008) Unexpected genetic heterogeneity in a large consanguineous Brazilian pedigree presenting deafness. Eur. J. Hum. Genet. 16, 89–96.

    Article  CAS  PubMed  Google Scholar 

  32. Woods, C. G., Cox, J., Springell, K., Hampshire, D. J., Mohamed, M. D., McKibbin, M. et al. (2006) Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am. J. Hum. Genet. 78, 889–896.

    Article  CAS  PubMed  Google Scholar 

  33. den Hollander, A. I., Koenekoop, R. K., Mohamed, M. D., Arts, H. H., Boldt, K., Towns, K. V. et al. (2007) Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat. Genet. 39, 889–895.

    Article  CAS  Google Scholar 

  34. Tranebjaerg, L., Schwartz, C., Eriksen, H., Andreasson, S., Ponjavic, V., Dahl, A. et al. (1995) A new X-linked recessive deafness syndrome with blindness, dystonia, fractures, and mental deficiency is linked to Xq22. J. Med. Genet. 32, 257–263.

    Article  CAS  PubMed  Google Scholar 

  35. Tyson, J., Bellman, S., Newton, V., Simpson, P., Malcolm, S., Pembrey, M. E. et al. (1996) Mapping of DFN2 to Xq22. Hum. Mol. Genet. 5, 2055–2060.

    Article  CAS  PubMed  Google Scholar 

  36. Lalwani, A. K., Brister, J. R., Fex, J., Grundfast, K. M., Pikus, A. T., Ploplis, B. et al. (1994) A new nonsyndromic X-linked sensorineural hearing impairment linked to Xp21.2. Am. J. Hum. Genet. 55, 685–694.

    CAS  PubMed  Google Scholar 

  37. Del Castillo, I., Villamar, M., Sarduy, M., Romero, L., Heraiz, C., Hernández, F. J. et al. (1996) A novel locus for non-syndromic sensorineural deafness (DFN6) maps to chromosome Xp22. Hum. Mol. Genet. 5, 1383–1387.

    Google Scholar 

  38. Phelps, P. D., Reardon, W., Pembrey, M., Bellman, S., and Luxon, L. (1991) X-linked deafness, stapes gushers and a distinctive defect of the inner ear. Neuroradiology 33, 326–330.

    Article  CAS  PubMed  Google Scholar 

  39. Huber, I., Bitner-Glindzicz, M., de Kok, Y. J. M., van der Maarel, S. M., Ishikawa-Brush, Y., Monaco, A. P. et al. (1994) X-linked mixed deafness (DFN3): cloning and characterization of the critical region allows the identification of novel microdeletions. Hum. Mol. Genet. 3, 1151–1154.

    Article  CAS  PubMed  Google Scholar 

  40. de Kok, Y. J. M., van der Maarel, S. M., Bitner-Glindzicz, M., Huber, I., Monaco, A. P., Malcolm, S. et al. (1995) Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 267, 685–688.

    Article  PubMed  Google Scholar 

  41. de Kok, Y. J. M., Vossenaar, E. R., Cremers, C. W. R. J., Dahl, N., Laporte, J., Hu, L. J. et al. (1996) Identification of a hot spot for microdeletions in patients with X-linked deafness (DFN3) 900 kb proximal to the DFN3 gene POU3F4. Hum. Mol. Genet. 5, 1229–1235.

    Article  PubMed  Google Scholar 

  42. Chen, A., Wayne, S., Bell, A., Ramesh, A., Srikumari Srisailapathy, C. R., Scott, D. A. et al. (1997) New gene for autosomal recessive non-syndromic hearing loss maps to either chromosome 3q or 19p. Am. J. Med. Genet. 71, 467–471.

    Article  CAS  PubMed  Google Scholar 

  43. Collins, J. S. and Schwartz, C. E. (2002) Detecting polymorphisms and mutations in candidate genes. Am. J. Hum. Genet. 71, 1251–1252.

    Article  CAS  PubMed  Google Scholar 

  44. Maugeri, A., van Driel, M. A., van de Pol, T. J. R., Klevering, B. J., van Haren, F. J. J., Tijmes, N. et al. (1999) The $2588G>C$ mutation in the ABCR gene is a mild frequent founder mutation in the western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am. J. Hum. Genet. 64, 1024–1035.

    Article  CAS  PubMed  Google Scholar 

  45. Chu, C. S., Trapnell, B. C., Curristin, S., Cutting, G. R., and Crystal, R. G. (1993) Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat. Genet. 3, 151–156.

    Article  CAS  PubMed  Google Scholar 

  46. Sanger, F., Nicklen, S., and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. U. S. A. 74, 5463–5467.

    Article  CAS  PubMed  Google Scholar 

  47. Wilson, R. K., Chen, C., Avdalovic, N., Burns, J., and Hood, L. (1990) Development of an automated procedure for fluorescent DNA sequencing. Genomics 6, 626–634.

    Article  CAS  PubMed  Google Scholar 

  48. Wilcox, E. and Fex, J. (1992) Construction of a cDNA library from microdissected guinea pig organ of Corti. Hearing Res. 62, 124–126.

    Article  CAS  Google Scholar 

  49. Ryan, A. F., Batcher, S., Lin, L., Brumm, D., O’Driscoll, K., and Harris, J. P. (1993) Cloning genes from an inner ear cDNA library. Arch. Otolaryngol. Head Neck Surg. 119, 1217–1220.

    CAS  PubMed  Google Scholar 

  50. Soto-Prior, A., Lavigne-Rebillard, M., Lenoir, M., Ripoll, C., Rebillard, G., Vago, P. et al. (1997) Identification of preferentially expressed cochlear genes by systematic sequencing of a rat cochlea cDNA library. Mol. Brain Res. 47, 1–10.

    Article  CAS  PubMed  Google Scholar 

  51. Harter, C., Ripoll, C., Lenoir, M., Hamel, C. P., and Rebillard, G. (1999) Expression pattern of mammalian cochlea outer hair cell (OHC) mRNA: screening of a rat OHC cDNA library. DNA Cell Biol. 18, 1–10.

    Article  CAS  PubMed  Google Scholar 

  52. Beisel, K. W., Shiraki, T., Morris, K. A., Pompeia, C., Kachar, B., Arakawa, T. et al. (2004) Identification of unique transcripts from a mouse full-length, subtracted inner ear cDNA library. Genomics 83, 1012–1023.

    Article  PubMed  Google Scholar 

  53. Ficker, M., Powles, N., Warr, N., Pirvola, U., and Maconochie, M. (2004) Analysis of genes from inner ear developmental-stage cDNA subtraction reveals molecular regionalization of the otic capsule. Dev. Biol. 268, 7–23.

    Article  CAS  PubMed  Google Scholar 

  54. Cohen-Salmon, M., Mattei, M. G., and Petit, C. (1999) Mapping of the otogelin gene (OTGN) to mouse chromosome 7 and human chromosome 11p14.3: a candidate for human autosomal recessive nonsyndromic deafness DFNB18. Mamm. Genome 10, 520–522.

    Article  CAS  PubMed  Google Scholar 

  55. Killick, R. and Richardson, G. (1997) Isolation of chicken alpha ENaC splice variants from a cochlear cDNA library. Biochim. Biophys. Acta 1350, 33–37.

    CAS  PubMed  Google Scholar 

  56. Heller, S., Sheane, C. A., Javed, Z., and Hudspeth, A. J. (1998) Molecular markers for cell types of the inner ear and candidate genes for hearing disorders. Proc. Natl. Acad. Sci. U.S.A. 95, 11400–11405.

    Article  CAS  PubMed  Google Scholar 

  57. Zheng, J., Long, K. B., Robison, D. E., He, D. Z., Cheng, J., Dallos, P. et al. (2002) Identification of differentially expressed cDNA clones from gerbil cochlear outer hair cells. Audiol. Neurootol. 7, 277–288.

    Article  CAS  PubMed  Google Scholar 

  58. Coimbra, R. S., Weil, D., Brottier, P., Blanchard, S., Levi, M., Hardelin, J. P. et al. (2002) A subtracted cDNA library from the zebrafish (Danio rerio) embryonic inner ear. Genome Res. 12, 1007–1011.

    Article  PubMed  Google Scholar 

  59. Peters, L. M., Belyantseva, I. A., Lagziel, A., Battey, J. F., Friedman, T. B., and Morell, R. J. (2007) Signatures from tissue-specific MPSS libraries identify transcripts preferentially expressed in the mouse inner ear. Genomics 89, 197–206.

    Article  CAS  PubMed  Google Scholar 

  60. Robertson, N. G., Khetarpal, U., Gutiérrez-Espeleta, G. A., Bieber, F. R., and Morton, C. C. (1994) Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening. Genomics 23, 42–50.

    Article  CAS  PubMed  Google Scholar 

  61. Jacob, A. N., Baskaran, N., Kandpal, G., Narayan, D., Bhargava, A. K., and Kandpal, R. P. (1997) Isolation of human ear specific cDNAs and construction of cDNA libraries from surgically removed small amounts of inner ear tissues. Somat. Cell Mol. Genet. 23, 83–95.

    Article  CAS  PubMed  Google Scholar 

  62. Luijendijk, M. W. J., van de Pol, T. J. R., van Duijnhoven, G., den Hollander, A. I., ten Caat, J., van Limpt, V. et al. (2003) Cloning, characterization and mRNA expression analysis of novel human fetal cochlea cDNAs. Genomics 82, 480–490.

    Article  CAS  PubMed  Google Scholar 

  63. Anderson, C. T. and Zheng, J. (2007) Isolation of outer hair cells from the cochlear sensory epithelium in whole-mount preparation using laser capture microdissection. J. Neurosci. Methods 162, 229–236.

    Article  PubMed  Google Scholar 

  64. Morris, K. A., Snir, E., Pompeia, C., Koroleva, I. V., Kachar, B., Hayashizaki, Y. et al. (2005) Differential expression of genes within the cochlea as defined by a custom mouse inner ear microarray. J. Assoc. Res. Otolaryngol. 6, 75–89.

    Article  PubMed  Google Scholar 

  65. Roche, J. P., Wackym, P. A., Cioffi, J. A., Kwitek, A. E., Erbe, C. B., and Popper, P. (2005) In silico analysis of 2085 clones from a normalized rat vestibular periphery $3$ cDNA library. Audiol. Neurootol. 10, 310–322.

    Article  CAS  PubMed  Google Scholar 

  66. McDermott, B. M., Jr., Baucom, J. M., and Hudspeth, A. J. (2007) Analysis and functional evaluation of the hair–cell transcriptome. Proc. Natl Acad. Sci. U.S.A. 104, 11820–11825.

    Article  CAS  PubMed  Google Scholar 

  67. van Driel, M. A., Cuelenaere, K., Kemmeren, P. P., Leunissen, J. A., and Brunner, H. G. (2003) A new web-based data mining tool for the identification of candidate genes for human genetic disorders. Eur. J. Hum. Genet. 11, 57–63.

    Article  PubMed  CAS  Google Scholar 

  68. van Driel, M. A., Cuelenaere, K., Kemmeren, P. P., Leunissen, J. A., Brunner, H. G., and Vriend, G. (2005) GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases. Nucleic Acids Res. 33, W758–W761.

    Article  PubMed  CAS  Google Scholar 

  69. Tiffin, N., Kelso, J. F., Powell, A. R., Pan, H., Bajic, V. B., and Hide, W. A. (2005) Integration of text- and data-mining using ontologies successfully selects disease gene candidates. Nucleic Acids Res. 33, 1544–1552.

    Article  CAS  PubMed  Google Scholar 

  70. Lopez-Bigas, N. and Ouzounis, C. A. (2004) Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 32, 3108–3114.

    Article  CAS  PubMed  Google Scholar 

  71. Adie, E. A., Adams, R. R., Evans, K. L., Porteous, D. J., and Pickard, B. S. (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics 6, 55.

    Article  PubMed  CAS  Google Scholar 

  72. Adie, E. A., Adams, R. R., Evans, K. L., Porteous, D. J., and Pickard, B. S. (2006) SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics 22, 773–774.

    Article  CAS  PubMed  Google Scholar 

  73. Turner, F. S., Clutterbuck, D. R., and Semple, C. A. (2003) POCUS: mining genomic sequence annotation to predict disease genes. Genome Biol. 4, R75.

    Article  PubMed  Google Scholar 

  74. Perez-Iratxeta, C., Bork, P., and Andrade, M. A. (2002) Exploring MEDLINE abstracts with XplorMed. Drugs Today 38, 381–389.

    Article  PubMed  Google Scholar 

  75. Perez-Iratxeta, C., Wjst, M., Bork, P., and Andrade, M. A. (2005) G2D: a tool for mining genes associated with disease. BMC Genet. 6, 45.

    Article  PubMed  CAS  Google Scholar 

  76. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  77. Tiffin, N., Adie, E., Turner, F., Brunner, H. G., van Driel, M. A., Oti, M. et al. (2006) Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res. 34, 3067–3081.

    Article  CAS  PubMed  Google Scholar 

  78. Rastan, S., Hough, T., Kierman, A., Hardisty, R., Erven, A., Gray, I. C. et al. (2004) Towards a mutant map of the mouse–new models of neurological, behavioural, deafness, bone, renal and blood disorders. Genetica 122, 47–49.

    Article  CAS  PubMed  Google Scholar 

  79. Friedman, L. M., Dror, A. A., and Avraham, K. B. (2007) Mouse models to study inner ear development and hereditary hearing loss. Int. J. Dev. Biol. 51, 609–631.

    Article  CAS  PubMed  Google Scholar 

  80. Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B., and Bradley, A. (1999) Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963.

    Article  CAS  PubMed  Google Scholar 

  81. Coghill, E. L., Hugill, A., Parkinson, N., Davison, C., Glenister, P., Clements, S. et al. (2002) A gene-driven approach to the identification of ENU mutants in the mouse. Nat. Genet. 30, 255–256.

    Article  PubMed  Google Scholar 

  82. Patton, E. E. and Zon, L. I. (2001) The art and design of genetic screens: zebrafish. Nat. Rev. Genet. 2, 956–966.

    Article  CAS  PubMed  Google Scholar 

  83. Malicki, J., Schier, A. F., Solnica-Krezel, L., Stemple, D. L., Neuhauss, S. C., Stainier, D. Y. et al. (1996) Mutations affecting development of the zebrafish ear. Development 123, 275–283.

    CAS  PubMed  Google Scholar 

  84. Whitfield, T. T., Granato, M., van Eeden, F. J., Schach, U., Brand, M., Furutani-Seiki, M. et al. (1996) Mutations affecting development of the zebrafish inner ear and lateral line. Development 123, 241–254.

    CAS  PubMed  Google Scholar 

  85. Sivasubbu, S., Balciunas, D., Amsterdam, A., and Ekker, S. C. (2007) Insertional mutagenesis strategies in zebrafish. Genome Biol. 8 Suppl. 1, S9.

    Article  PubMed  Google Scholar 

  86. Franke, L., van Bakel, H., Fokkens, L., de Jong, E. D., Egmont-Petersen, M., and Wijmenga, C. (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet. 78, 1011–1025.

    Article  CAS  PubMed  Google Scholar 

  87. Alfarano, C., Andrade, C. E., Anthony, K., Bahroos, N., Bajec, M., Bantoft, K. et al. (2005) The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res. 33, D418–D424.

    Article  CAS  PubMed  Google Scholar 

  88. Peri, S., Navarro, J. D., Kristiansen, T. Z., Amanchy, R., Surendranath, V., Muthusamy, B. et al. (2004) Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 32, D497–D501.

    Article  CAS  PubMed  Google Scholar 

  89. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B. et al. (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428–D432.

    Article  CAS  PubMed  Google Scholar 

  90. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280.

    Article  CAS  PubMed  Google Scholar 

  91. Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R. et al. (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261.

    Article  CAS  PubMed  Google Scholar 

  92. Ball, C. A., Awad, I. A., Demeter, J., Gollub, J., Hebert, J. M., Hernandez-Boussard, T. et al. (2005) The Stanford Microarray Database accommodates additional microarray platforms and data formats. Nucleic Acids Res. 33, D580–D582.

    Article  CAS  PubMed  Google Scholar 

  93. Barrett, T. and Edgar, R. (2006) Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol. 411, 352–369.

    Article  CAS  PubMed  Google Scholar 

  94. Barrett, T. and Edgar, R. (2006) Mining microarray data at NCBI’s Gene Expression Omnibus (GEO)$*$. Methods Mol. Biol. 338, 175–190.

    CAS  PubMed  Google Scholar 

  95. Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H. et al. (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968.

    Article  CAS  PubMed  Google Scholar 

  96. Lehner, B. and Fraser, A. G. (2004) Protein domains enriched in mammalian tissue-specific or widely expressed genes. Trends Genet. 20, 468–472.

    Article  CAS  PubMed  Google Scholar 

  97. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De, S. F. et al. (2006) Gene prioritization through genomic data fusion. Nat. Biotechnol. 24, 537–544.

    Article  CAS  PubMed  Google Scholar 

  98. Oti, M., Snel, B., Huynen, M. A., and Brunner, H. G. (2006) Predicting disease genes using protein-protein interactions. J. Med. Genet. 43, 691–698.

    Article  CAS  PubMed  Google Scholar 

  99. George, R. A., Liu, J. Y., Feng, L. L., Bryson-Richardson, R. J., Fatkin, D., and Wouters, M. A. (2006) Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Res. 34, e130.

    Article  PubMed  CAS  Google Scholar 

  100. Burckstummer, T., Bennett, K. L., Preradovic, A., Schutze, G., Hantschel, O., Superti-Furga, G. et al. (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat. Methods 3, 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  101. Tsai, A. and Carstens, R. P. (2006) An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach. Nat. Protoc. 1, 2820–2827.

    Article  CAS  PubMed  Google Scholar 

  102. Gloeckner, C. J., Boldt, K., Schumacher, A., Roepman, R., and Ueffing, M. (2007) A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteomics 7, 4228–4234.

    Article  CAS  PubMed  Google Scholar 

  103. Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D. et al. (1996) Accessing genetic information with high-density DNA arrays. Science 274, 610–614.

    Article  CAS  PubMed  Google Scholar 

  104. Albert, T. J., Molla, M. N., Muzny, D. M., Nazareth, L., Wheeler, D., Song, X. et al. (2007) Direct selection of human genomic loci by microarray hybridization. Nat. Methods 4, 903–905.

    Article  CAS  PubMed  Google Scholar 

  105. Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M. N., Smith, S. W. et al. (2007) Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527.

    Article  CAS  PubMed  Google Scholar 

  106. Pruitt, K. D. and Maglott, D. R. (2001) RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res. 29, 137–140.

    Article  CAS  PubMed  Google Scholar 

  107. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A. et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.

    CAS  PubMed  Google Scholar 

  108. Hardenbol, P., Yu, F., Belmont, J., Mackenzie, J., Bruckner, C., Brundage, T. et al. (2005) Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 15, 269–275.

    Article  CAS  PubMed  Google Scholar 

  109. Frischmeyer, P. A. and Dietz, H. C. (1999) Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893–1900.

    Article  CAS  PubMed  Google Scholar 

  110. Sheth, N., Roca, X., Hastings, M. L., Roeder, T., Krainer, A. R., and Sachidanandam, R. (2006) Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res. 34, 3955–3967.

    Article  CAS  PubMed  Google Scholar 

  111. Shapiro, M. B. and Senapathy, P. (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15, 7155–7174.

    Article  CAS  PubMed  Google Scholar 

  112. Bischoff, A. M. L. C., Luijendijk, M. W. J., Huygen, P. L. M., van Duijnhoven, G., de Leenheer, E. M. R., Oudesluijs, G. G. et al. (2004) A novel mutation identified in the DFNA5 gene in a Dutch family: a clinical and genetic evaluation. Audiol. Neurootol. 9, 34–46.

    Article  CAS  PubMed  Google Scholar 

  113. Amendt, B. A., Si, Z. H., and Stoltzfus, C. M. (1995) Presence of exon splicing silencers within human immunodeficiency virus type 1 tat exon 2 and tat-rev exon 3: evidence for inhibition mediated by cellular factors. Mol. Cell Biol. 15, 4606–4615.

    CAS  PubMed  Google Scholar 

  114. Grantham, R. (1974) Amino acid difference formula to help explain protein evolution. Science 185, 862–864.

    Article  CAS  PubMed  Google Scholar 

  115. Betts, M. J. and Russel, R. B. (2003) Amino acid properties and consequences of substitutions. In Bioinformatics for Geneticists. Barnes, M. R. and Gray, I. C. (ed.) Wiley.

    Google Scholar 

  116. Pinto, D., Marshall, C., Feuk, L., and Scherer, S. W. (2007) Copy-number variation in control population cohorts. Hum. Mol. Genet. 16 Spec. No. 2, R168–R173.

    Article  CAS  Google Scholar 

  117. Sellner, L. N. and Taylor, G. R. (2004) MLPA and MAPH: new techniques for detection of gene deletions. Hum. Mutat. 23, 413–419.

    Article  CAS  PubMed  Google Scholar 

  118. Joncourt, F., Neuhaus, B., Jostarndt-Foegen, K., Kleinle, S., Steiner, B., and Gallati, S. (2004) Rapid identification of female carriers of DMD/BMD by quantitative real-time PCR. Hum. Mutat. 23, 385–391.

    Article  CAS  PubMed  Google Scholar 

  119. Traverso, M., Malnati, M., Minetti, C., Regis, S., Tedeschi, S., Pedemonte, M. et al. (2006) Multiplex real-time PCR for detection of deletions and duplications in dystrophin gene. Biochem. Biophys. Res. Commun. 339, 145–150.

    Article  CAS  PubMed  Google Scholar 

  120. den Dunnen, J. T. and Antonarakis, S. E. (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion. Hum. Mutat. 15, 7–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kremer, H., Cremers, F.P. (2009). Positional Cloning of Deafness Genes. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology™, vol 493. Humana Press. https://doi.org/10.1007/978-1-59745-523-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-523-7_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-62-6

  • Online ISBN: 978-1-59745-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics