Skip to main content

Single-Molecule Fluorescence Studies of Protein Folding

  • Protocol
  • First Online:
Protein Structure, Stability, and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 490))

Abstract

The structural and dynamic details of protein folding are still widely unexplored due to the enormous level of heterogeneity intrinsic to this process. The unfolded polypeptide chain can assume a vast number of possible conformations, and many complex pathways lead from the ensemble of unfolded conformations to the ensemble of native conformations in an overall funnel-shaped energy landscape. Classical experimental methods involve measurements on bulk samples and usually yield only average values characteristic of the entire molecular ensemble under study. The observation of individual molecules avoids this averaging and allows, in principle, microscopic distributions of conformations and folding trajectories to be revealed. Fluorescence-based techniques are arguably the most versatile single-molecule methods at present, and Förster resonance energy transfer (FRET) between two dye molecules specifically attached to the protein of interest provides a means of studying the inter-dye distance and, thereby, the conformation of folding polypeptide chains in real time. This chapter focuses on practical aspects and different experimental realizations for protein folding investigations by using single-molecule fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Levinthal, C. (1968) Are there pathways for protein folding?, J Chim Phys 65, 44–45.

    Google Scholar 

  2. Baldwin, R. L. (1995) The nature of protein folding pathways: The classical versus the new view, J Biomol NMR 5, 103–109.

    Article  PubMed  CAS  Google Scholar 

  3. Onuchic, J. N., Wolynes, P. G. (2004) Theory of protein folding, Curr Opin Struct Biol 14, 70–75.

    Article  PubMed  CAS  Google Scholar 

  4. Wolynes, P. G., Onuchic, J. N., Thirumalai, D. (1995) Navigating the folding routes, Science 267, 1619–1620.

    Article  PubMed  CAS  Google Scholar 

  5. Onuchic, J. N., Nymeyer, H., Garcia, A. E., et al. (2000) The energy landscape theory of protein folding: Insights into folding mechanisms and scenarios, Adv Protein Chem 53, 87–152.

    Article  PubMed  CAS  Google Scholar 

  6. Dill, K. A., Chan, H. S. (1997) From Levinthal to pathways to funnels, Nat Struct Biol 4, 10–19.

    Article  PubMed  CAS  Google Scholar 

  7. Callender, R. H., Dyer, R. B., Gilmanshin, R., et al. (1998) Fast events in protein folding: The time evolution of primary processes, Annu Rev Phys Chem 49, 173–202.

    Article  PubMed  CAS  Google Scholar 

  8. Eaton, W. A., Munoz, V., Hagen, S. J., et al. (2000) Fast kinetics and mechanisms in protein folding, Annu Rev Biophys Biomol Struct 29, 327–359.

    Article  PubMed  CAS  Google Scholar 

  9. Gruebele, M. (1999) The fast protein folding problem, Annu Rev Phys Chem 50, 485–516.

    Article  PubMed  CAS  Google Scholar 

  10. Neher, E., Sakmann, B. (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres, Nature 260, 799–802.

    Article  PubMed  CAS  Google Scholar 

  11. Rief, M., Gautel, M., Oesterhelt, F., et al. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM, Science 276, 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  12. Cecconi, C., Shank, E. A., Bustamante, C., et al. (2005) Direct observation of the three-state folding of a single protein molecule, Science 23, 2057–2060.

    Article  Google Scholar 

  13. Kellermayer, M. S., Smith, S. B., Granzier, H. L., et al. (1997) Folding–unfolding transitions in single titin molecules characterized with laser tweezers, Science 276, 1112–1116.

    Article  PubMed  CAS  Google Scholar 

  14. Michalet, X., Kapanidis, A. N., Laurence, T., et al. (2003) The power and prospects of fluorescence microscopies and spectroscopies, Annu Rev Biophys Biomol Struct 32, 161–182.

    Article  PubMed  CAS  Google Scholar 

  15. Böhmer, M., Enderlein, J. (2003) Fluorescence spectroscopy of single molecules under ambient conditions: Methodology and technology, ChemPhysChem 4, 793–808.

    Article  PubMed  Google Scholar 

  16. Haran, G. (2003) Single-molecule fluorescence spectroscopy of biomolecular folding, J. Phys Condens Matter 15, R1219–R1317.

    Article  Google Scholar 

  17. Schuler, B. (2005) Single-molecule fluorescence spectroscopy of protein folding, ChemPhysChem 6, 1206–1220.

    Article  PubMed  CAS  Google Scholar 

  18. Nienhaus, G. U. (2006) Exploring protein structure and dynamics under denaturing conditions by single-molecule FRET analysis, Macromol Biosci 6, 907–922.

    Article  PubMed  CAS  Google Scholar 

  19. Förster, T. (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann Physik (Leipzig) 437, 55–75 (Translated in: Biological Physics, edited by Mielczarek, E.V., Greenbaum, E., Knox, R.S., American Institute of Physics, New York, 1993, pp. 1148–1160).

    Google Scholar 

  20. Ha, T., Enderle, T., Ogletree, D. F., et al. (1996) Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor, Proc Natl Acad Sci USA 93, 6264–6268.

    Article  PubMed  CAS  Google Scholar 

  21. Selvin, P. R. (2000) The renaissance of fluorescence energy transfer, Nat Struct Biol 7, 730–734.

    Article  PubMed  CAS  Google Scholar 

  22. Kuzmenkina, E. V., Heyes, C. D., Nienhaus, G. U. (2006) Single-molecule FRET study of denaturant induced unfolding of RNase H, J Mol Biol 327, 313–324.

    Article  Google Scholar 

  23. Schuler, B., Lipman, E. A., Eaton, W. A. (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy, Nature 419, 743–747.

    Article  PubMed  CAS  Google Scholar 

  24. McCarney, E. R., Werner, J. H., Bernstein, S. L., et al. (2005) Site-specific dimensions across a highly denatured protein: a single molecule study, J Mol Biol 352, 672–682.

    Article  PubMed  CAS  Google Scholar 

  25. Kuzmenkina, E. V., Heyes, C. D., Nienhaus, G. U. (2005) Single molecule Förster resonance energy transfer study of protein dynamics under denaturing conditions, Proc Natl Acad Sci USA 102, 15471–15476.

    Article  PubMed  CAS  Google Scholar 

  26. Rhoades, E., Cohen, M., Schuler, B., et al. (2004) Two-state folding observed in individual protein molecules, J Am Chem Soc 126, 14686–14687.

    Article  PubMed  CAS  Google Scholar 

  27. Lipman, E. A., Schuler, B., Bakajin, O., et al. (2003) Single-molecule measurement of protein folding kinetics, Science 301, 1233–1235.

    Article  PubMed  CAS  Google Scholar 

  28. Wahl, M., Koberling, F., Patting, M., et al. (2004) Time-resolved confocal fluorescence imaging and spectroscopy system with single molecule sensitivity and sub-micrometer resolution, Curr Pharm Biotechnol 5, 299–308.

    Article  PubMed  CAS  Google Scholar 

  29. Ha, T. (2001) Single molecule flourescence resonance transfer, Methods 25, 78–86.

    Article  PubMed  CAS  Google Scholar 

  30. Widengren, J., Kudryavtsev, V., Antonik, M., et al. (2006) Single-molecule detection and identification of multiple species by multiparameter fluorescence detection, Anal Chem 78, 2039–2050.

    Article  PubMed  CAS  Google Scholar 

  31. Flomenbom, O., Klafter, J., Szabo, A. (2005) What can one learn from two-state single-molecule trajectories?, Biophys J 88, 3780–3783.

    Article  PubMed  CAS  Google Scholar 

  32. Zemanová, L., Schenk, A., Valler, M. J., et al. (2005) High-throughput screening of interactions between G protein-coupled receptors and ligands using confocal optics microscopy, Methods Mol Biol 305, 365–384.

    PubMed  Google Scholar 

  33. Hazlett, T. L., Ruan, Q., Tetin, S. Y. (2005) Application of fluorescence correlation spectroscopy to hapten–antibody binding, Methods Mol Biol 305, 415–438.

    PubMed  CAS  Google Scholar 

  34. Haustein, E., Schwille, P. (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy, Methods 29, 153–166.

    Article  PubMed  CAS  Google Scholar 

  35. Lamb, D. C., Schenk, A., Röcker, C., et al. (2000) Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection, Biophys J 79, 1129–1138.

    Article  PubMed  CAS  Google Scholar 

  36. Dertinger, T., Pacheco, V., von der Hocht, I., et al. (2007) Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements, ChemPhysChem 8, 433–443.

    Google Scholar 

  37. Clegg, R. M. (1996) in (Wang, X. F., and Herman, B., eds.) Fluorescence imaging spectroscopy and microscopy, pp 180–252. John Wiley & Sons.

    Google Scholar 

  38. Van der Meer, B. W., Coker III, G., Chen, S.-Y. S. (1994) Resonance energy transfer: Theory and data, VCH Publishers, Inc., New York, Weinheim, Cambridge.

    Google Scholar 

  39. Stryer, L., Haugland, R. P. (1967) Energy transfer: A spectroscopic ruler, Proc Natl Acad Sci USA 58, 719–726.

    Article  PubMed  CAS  Google Scholar 

  40. Rasnik, I., McKinney, S. A., Ha, T. (2005) Surfaces and orientations: Much to fret about?, Acc Chem Res 38, 542–548.

    Article  PubMed  CAS  Google Scholar 

  41. Coban, O., Lamb, D. C., Zaychikov, E., et al. (2006) Conformational heterogeneity in RNA polymerase observed by single-pair FRET microscopy, Biophys J 90, 4605–4617.

    Article  PubMed  CAS  Google Scholar 

  42. Majumdar, Z. K., Hickerson, R., Noller, H. F., et al. (2005) Measurements of internal distance changes of the 30S ribosome using FRET with multiple donor–acceptor pairs: Quantitative spectroscopic methods, J Mol Biol 351, 1123–1145.

    Article  PubMed  CAS  Google Scholar 

  43. Vörös, J. (2004) The density and refractive index of adsorbing protein layers, Biophys J 87, 553–561.

    Article  PubMed  Google Scholar 

  44. Schuler, B., Lipman, E. A., Steinbach, P. J., et al. (2005) Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence, Proc Natl Acad Sci USA 102, 2754–2759.

    Article  PubMed  CAS  Google Scholar 

  45. Kapanidis, A. N., Lee, N. K., Laurence, T. A., et al. (2004) Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules, Proc Natl Acad Sci USA 101, 8936–8941.

    Article  PubMed  CAS  Google Scholar 

  46. Müller, B. K., Zaychikov, E., Bräuchle, C., et al. (2005) Pulsed interleaved excitation, Biophys J 89, 3508–3522.

    Article  PubMed  Google Scholar 

  47. Panchuk-Voloshina, N., Haugland, R. P., Bishop-Stewart, J., et al. (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, J Histochem Cytochem 47, 1179–1188.

    Article  PubMed  CAS  Google Scholar 

  48. Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., et al. (1993) Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconjug Chem 4, 105–111.

    Article  PubMed  CAS  Google Scholar 

  49. Schuler, B., Pannell, L. K. (2002) Specific labeling of polypeptides at amino-terminal cysteine residues using Cy5-benzyl thioester, Bioconjug Chem 13, 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  50. Yamaguchi, J., Nemoto, N., Sasaki, T., et al. (2001) Rapid functional analysis of protein–protein interactions by fluorescent C-terminal labeling and single-molecule imaging, FEBS Lett 502, 79–83.

    Article  PubMed  CAS  Google Scholar 

  51. Cropp, T. A., Schultz, P. G. (2004) An expanding genetic code, Trends Genet 20, 625–630.

    Article  PubMed  CAS  Google Scholar 

  52. David, R., Richter, M. P., Beck-Sickinger, A. G. (2004) Expressed protein ligation. Method and applications, Eur J Biochem 271, 663–677.

    Article  PubMed  CAS  Google Scholar 

  53. Kapanidis, A. N., Weiss, S. (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules, J Chem Phys 117, 10953–10964.

    Article  CAS  Google Scholar 

  54. Rhoades, E., Gussakovsky, E., Haran, G. (2003) Watching proteins fold one molecule at a time, Proc Natl Acad Sci USA 100, 3197–3202.

    Article  PubMed  CAS  Google Scholar 

  55. Amirgoulova, E. V., Groll, J., Heyes, C. D., et al. (2004) Biofunctionalized polymer surfaces exhibit minimal interaction towards immobilized proteins, ChemPhysChem 5, 552–555.

    Article  PubMed  CAS  Google Scholar 

  56. Talaga, D. S., Lau, W. L., Roder, H., et al. (2000) Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy, Proc Natl Acad Sci USA 97, 13021–13026.

    Article  PubMed  CAS  Google Scholar 

  57. Rasnik, I., Myong, S., Cheng, W., et al. (2004) DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: Single molecule studies of fluorescently labeled enzymes, J Mol Biol 336, 395–408.

    Article  PubMed  CAS  Google Scholar 

  58. Wennmalm, S., Edman, L., Rigler, R. (1997) Conformational fluctuations in single DNA molecules, Proc Natl Acad Sci USA 94, 10641–10646.

    Article  PubMed  CAS  Google Scholar 

  59. Ha, T., Rasnik, I., Cheng, W., et al. (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli rep helicase, Nature 419, 638–641.

    CAS  Google Scholar 

  60. Groll, J., Amirgoulova, E., Ameringer, T., et al. (2004) Biofunctionalized, ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins, J Am Chem Soc 126, 4234–4239.

    Article  PubMed  CAS  Google Scholar 

  61. Dickson, R. M., Cubitt, A. B., Tsien, R. Y., et al. (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein, Nature 388, 3558–3358.

    Google Scholar 

  62. Lu, H. P., Xun, L., Xie, X. S. (1998) Single molecule enzymatic dynamics, Science 282, 1877–1882.

    Article  PubMed  CAS  Google Scholar 

  63. Boukobza, E., Sonnenfeld, A., Haran, G. (2001) Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy, J Phys Chem B 105, 12165–12170.

    Article  CAS  Google Scholar 

  64. Harada, Y., Sakurada, K., Aoki, T., et al. (1990) Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay, J Mol Biol 216, 49–68.

    Article  PubMed  CAS  Google Scholar 

  65. Englander, S. W., Calhoun, D. B., Englander, J. J. (1987) Biochemistry without oxygen, Anal Biochem 161, 300–306.

    Article  PubMed  CAS  Google Scholar 

  66. Schuler, B. (2007) Application of single molecule Förster resonance energy transfer to protein folding, Methods Mol Biol 350, 115–138.

    PubMed  CAS  Google Scholar 

  67. Eggeling, C., Berger, S., Brand, L., et al. (2001) Data registration and selective single-molecule analysis using multi-parameter fluorescence detection, J Biotechnol 86, 163–180.

    Article  PubMed  CAS  Google Scholar 

  68. Friedel, M., Baumketner, A., Shea, J. E. (2006) Effects of surface tethering on protein folding mechanisms, Proc Natl Acad Sci USA 103, 8396–8401.

    Article  PubMed  CAS  Google Scholar 

  69. Yamasaki, K., Ogasahara, K., Yutani, K., et al. (1995) Folding pathway of Escherichia coli ribonuclease HI: A circular dichroism, fluorescence, and NMR study, Biochemistry 34, 16552–16562.

    Article  PubMed  CAS  Google Scholar 

  70. Parker, M. J., Marqusee, S. (1999) The cooperativity of burst phase reactions explored, J Mol Biol 293, 1195–1210.

    Article  PubMed  CAS  Google Scholar 

  71. Staniforth, R. A., Burston, S. G., Smith, C. J., et al. (1993) The energetics and cooperativity of protein folding: A simple experimental analysis based upon the solvation of internal residues, Biochemistry 32, 3842–3851.

    Article  PubMed  CAS  Google Scholar 

  72. Parker, M. J., Spencer, J., Clarke, A. R. (1995) An integrated kinetic analysis of intermediates and transition states in protein folding reactions, J Mol Biol 253, 771–786.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank my collaborators, in particular Drs. Elza V. Kuzmenkina and Colin D. Heyes, for their significant contributions to our protein folding project. It is with great pleasure that I acknowledge Dr. Karin Nienhaus for her substantial assistance with the preparation of this manuscript. Thanks are also due to Dr. Jürgen Groll and Prof. Martin Möller for their support with star-PEG coated surfaces and SusTech GmbH for providing the material. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, SFB 569) and the “Fonds der Chemischen Industrie”.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nienhaus, G.U. (2009). Single-Molecule Fluorescence Studies of Protein Folding. In: Shriver, J. (eds) Protein Structure, Stability, and Interactions. Methods in Molecular Biology, vol 490. Humana Press. https://doi.org/10.1007/978-1-59745-367-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-367-7_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-954-3

  • Online ISBN: 978-1-59745-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics