Skip to main content

The Physiology of the Xenopus laevis Ovary

  • Protocol
Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

Xenopus laevis has been used for many decades to study oocyte development and maturation. The Xenopus oocytes’ large size, relative abundance, and clearly defined progression of physical characteristics from oogonia to eggs make them ideal for studying oogenesis. In addition, the ability of steroids to trigger Xenopus oocyte maturation in vitro has resulted in their extensive use for the study of the complexities of meiosis. Interestingly, steroid-induced maturation of Xenopus oocytes occurs completely independent of transcription; thus, this process serves as one of the few biologically relevant models of nongenomic steroid-mediated signaling. Finally, Xenopus oocytes appear to play a critical role in ovarian steroidogenesis, suggesting that the Xenopus ovary may serve as a novel system for studying steroidogenesis. Evidence indicates that many of the features defining Xenopus laevis oogenesis and maturation might also be occurring in mammals, further emphasizing the strength and relevance of Xenopus laevis as a model for ovarian development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lofts, B. (1974) Reproduction, in Physiology of the Amphibia (Lofst, B., ed.), Academic Press, London, pp. 107–218.

    Google Scholar 

  2. Franchi, L. L. (1962) The structure of the ovary—vertebrates, in The Ovary (Zuckerman, S., ed.), Academic Press, New York, pp. 121–142.

    Google Scholar 

  3. Hausen, P. (1991) The Early Development of Xenopus laevis: An Atlas of the Histology, Springer-Verlag, Berlin.

    Google Scholar 

  4. Browne, C. L., Wiley, H. S., and Dumont, J. N. (1979) Oocyte-follicle cell gap junctions in Xenopus laevis and the effects of gonadotropin on their permeability. Science 203, 182–183.

    Article  CAS  PubMed  Google Scholar 

  5. Dumont, J. N. (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153–179.

    Article  CAS  PubMed  Google Scholar 

  6. Scheer, U. (1973) Nuclear pore flow rate of ribosomal RNA and chain growth rate of its precursor during oogenesis of Xenopus laevis. Dev. Biol. 30, 13–28.

    Article  CAS  PubMed  Google Scholar 

  7. Follett, B. K. and Redshaw, M. R. (1974) The physiology of the vitellogenesis, in Physiology of the Amphibia (Lofts, B., ed.), Academic Press, London, pp. 219–308.

    Google Scholar 

  8. Taylor, M. A. and Smith, L. D. (1985) Quantitative changes in protein synthesis during oogenesis in Xenopus laevis. Dev. Biol. 110, 230–237.

    Article  CAS  PubMed  Google Scholar 

  9. Dolecki, G. J. and Smith, L. D. (1979) Poly(A)+ RNA metabolism during oogenesis in Xenopus laevis. Dev. Biol. 69, 217–236.

    Article  CAS  PubMed  Google Scholar 

  10. de Moor, C. H. and Richter, J. D. (1997) The Mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol. Cell Biol. 17, 6419–6426.

    PubMed  Google Scholar 

  11. Mendez, R., Hake, L. E., Andresson, T., Littlepage, L. E., Ruderman, J. V., and Richter, J. D. (2000) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson, J., Canning, J., Kaneko, T., Pru, J. K., and Tilly, J. L. (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–150.

    Article  CAS  PubMed  Google Scholar 

  13. Keem, K., Smith, L. D., Wallace, R. A., and Wolf, D. (1979) Growth rate of oocytes in laboratory maintained Xenopus laevis. Gamete Res. 2, 125–135.

    Article  Google Scholar 

  14. Smith, C. L. (1955) Reproduction in female amphibia. Mem. Soc. Endocrinol. 4, 39–56.

    Google Scholar 

  15. Dumont, J. N. and Brummett, A. R. (1978) Oogenesis in Xenopus laevis (Daudin). V. Relationships between developing oocytes and their investing follicular tissues. J. Morphol. 155, 73–98.

    Article  CAS  PubMed  Google Scholar 

  16. Kemp, N. E. (1958) Electron microscopy of growing oocytes of Rana piienps. J. Biophys. Biochem. Cytol. 2, 281–292.

    Article  Google Scholar 

  17. Alfert, M. (1954) Comparison and structure of giant chromosomes. Internal Rev. Cytol. 3, 131–175.

    Article  CAS  Google Scholar 

  18. Hill, R. S. and Macgregor, H. C. (1980) The development of lampbrush chromosome-type transcription in the early diplotene oocytes of Xenopus laevis an electron-microscope analysis. J. Cell Sci. 44, 87–101.

    CAS  PubMed  Google Scholar 

  19. Davidson, E. H. (1986) Gene Activity in Early Development, 3rd ed., Academic Press, New York.

    Google Scholar 

  20. Tourte, M., Mignotte, F., and Mounolou, J. C. (1981) Organization and replication activity of the mitochondrial mass of oogonia and previtellogenic oocytes in Xenopus laevis. Dev. Growth Differ. 23, 9–21.

    Article  Google Scholar 

  21. Danilchik, M. V. and Gerhart, J. C. (1987) Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient. Dev. Biol. 122, 101–112.

    Article  CAS  PubMed  Google Scholar 

  22. Wylie, C. C, Brown, D., Godsave, S. F., Quarmby, J., and Heasman, J. (1985) The cytoskeleton of Xenopus oocytes and its role in development. J. Embryol. Exp. Morphol. 89Suppl, 1–15.

    PubMed  Google Scholar 

  23. Coggins, L. W. (1973) An ultrastructural and radioautographic study of early oogenesis in the toad Xenopus laevis. J. Cell Sci. 12, 71–93.

    CAS  PubMed  Google Scholar 

  24. Follett, B. K., Nicholls, T. J., and Redshaw, M. R. (1968) The vitellogenic response in the South African clawed toad (Xenopus laevis Daudin). J. Cell Physiol. 72,Suppl 1, 91+.

    Google Scholar 

  25. Barth, L. G. and Barth, L. J. (1951) The relation of adenosine triphosphate to yolk utilization in the frog’s egg. J. Exp. Zool. 116, 99–122.

    Article  CAS  Google Scholar 

  26. Redshaw, M. R., Follett, B. K., and Nichollis, T. J. (1969) Comparative effects of the oestrogens and other steroid hormones on serum lipids and proteins in Xenopus laevis Daudin. J. Endocrinol. 43, 47–53.

    Article  CAS  PubMed  Google Scholar 

  27. Wallace, R. A., Jared, D. W., and Nelson, B. L. (1970) Protein incorporation by isolated amphibian oocytes. I. Preliminary studies. J. Exp. Zool. 175, 259–269.

    Article  CAS  PubMed  Google Scholar 

  28. Wallace, R. A., Nickol, J. M, Ho, T., and Jared, D. W. (1972) Studies on amphibian yolk. X. The relative roles of autosynthetic and heterosynthetic processes during yolk protein assembly by isolated oocytes. Dev. Biol. 29, 255–272.

    Article  CAS  PubMed  Google Scholar 

  29. Wiley, H. S. and Dumont, J. N. (1978) Stimulation of vitellogenin uptake in stage IV Xenopus oocytes by treatment with chorionic gonadotropin in vitro. Biol. Reprod. 18, 762–771.

    Article  CAS  PubMed  Google Scholar 

  30. Dodd, J. M. (1960) Gonadal and gonadotrophic hormones in lower vertebrates, in Marshall’s Physiology of Reproduction (Parkes, A. S., ed.), Longmans Green, London, pp. 417–582.

    Google Scholar 

  31. Barr, W. A. (1968) Patterns of ovarian activity, in Perspective in Endocrinology: Hormones in the Lives of Lower Vertebrates (Jorgensen, E. J. W. Ba. C. B., ed.), Academic Press, New York, pp. 164–238.

    Google Scholar 

  32. Lutz, L. B., Cole, L. M., Gupta, M. K., Kwist, K. W., Auchus, R. J., and Hammes, S. R. (2001) Evidence that androgens are the primary steroids produced by Xenopus laevis ovaries and may signal through the classical androgen receptor to promote oocyte maturation. Proc. Natl. head. Sci. U. S. A. 98, 13,728–13,733.

    Article  CAS  Google Scholar 

  33. Ozon, R. (1967) [In vitro synthesis of steroid hormones in the testicle and ovary of the urodele amphibian Pleurodeles waltlii Michah]. Gen. Comp. Endocrinol. 8, 214–227.

    Article  CAS  PubMed  Google Scholar 

  34. Redshaw, M. R. and Nicholls, T. J. (1971) Oestrogen biosynthesis by ovarian tissue of the South African clawed toad, Xenopus laevis Daudin. Gen. Comp. Endocrinol. 16, 85–96.

    Article  CAS  PubMed  Google Scholar 

  35. Yang, W. H., Lutz, L. B., and Hammes, S. R. (2003) Xenopus laevis ovarian CYP17 is a highly potent enzyme expressed exclusively in oocytes. Evidence that oocytes play a critical role in Xenopus ovarian androgen production. J. Biol. Chem. 278, 9552–9559.

    Article  CAS  PubMed  Google Scholar 

  36. Rugh, R. (1935) Ovulation in the frog. I. Pituitary relations in induced ovulation. J. Exp. Zool. 71, 149–162.

    Article  Google Scholar 

  37. Heilbrunn, L. V., Daugherty, K., and Wilbur, K. M. (1939) Initiation of maturation in the frog egg. Physiol. Zool. 12, 97–100.

    CAS  Google Scholar 

  38. Ryan, F. J. and Grant, R. (1940) The stimulus for maturation and for ovulation of the frog’s egg. Physiol. Zool. 13, 383–390.

    Google Scholar 

  39. Smith, L. D., Ecker, R. E., and Subtelny, S. (1968) In vitro induction of physiological maturation in Rana pipiens oocytes removed from their ovarian follicles. Dev. Biol. 17, 627–643.

    Article  CAS  PubMed  Google Scholar 

  40. Le Goascogne, C, Sananes, N., Gouezou, M., and Baulieu, E. E. (1985) Testosterone-induced meiotic maturation of Xenopus laevis oocytes: evidence for an early effect in the synergistic action of insulin. Dev. Biol. 109, 9–14.

    Article  PubMed  Google Scholar 

  41. Mailer, J. L. and Krebs, E. G. (1980) Regulation of oocyte maturation. Curr. Top. Cell Regul. 16,271–311.

    Google Scholar 

  42. Lutz, L. B., Kim, B., Jahani, D., and Hammes, S. R. (2000) G protein βγ subunits inhibit nongenomic progesterone-induced signaling and maturation in Xenopus laevis oocytes. Evidence for a release of inhibition mechanism for cell cycle progression. J. Biol. Chem. 275, 41,512–41,520.

    Article  CAS  PubMed  Google Scholar 

  43. Sheng, Y., Tiberi, M., Booth, R. A., Ma, C, and Liu, X. J. (2001) Regulation of Xenopus oocyte meiosis arrest by G protein βγ subunits. Curr. Biol. 11, 405–416.

    Article  CAS  PubMed  Google Scholar 

  44. Gill, A., Jamnongjit, M., and Hammes, S. R. (2004) Androgens promote maturation and signaling in mouse oocytes independent of transcription: a release of inhibition model for mammalian oocyte meiosis. Mol. Endocrinol. 18, 97–104.

    Article  CAS  PubMed  Google Scholar 

  45. Conti, M., Andersen, C. B., Richard, F., et al. (2002) Role of cyclic nucleotide signaling in oocyte maturation. Mol. Cell Endocrinol. 187, 153–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rasar, M.A., Hammes, S.R. (2006). The Physiology of the Xenopus laevis Ovary. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics