Skip to main content

Folate Biochemistry in Relation to Antifolate Selectivity

  • Chapter
Antifolate Drugs in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

This review will deal with advances in folate biochemistry related to antifolate toxicity and selectivity. Because of the interrelatedness of reactions of folate metabolism, alterations in the activity of any folate enzyme, cellular transport system, as well as the concentration of any folate metabolite may be relevant to antifolate cytotoxicity and selectivity. Therefore, it is difficult to predict the results of inhibiting a given folate enzyme on antifolate selectivity. For example, in many experimental systems, the cytotox-icity of methotrexate is caused by its ability to inhibit dihydrofolate reductase, resulting in lowered thymidylate formation, leading to lethal defects in DNA. However, its selec-tiviry is often dependent on differential cellular uptake and polyglutamylation. Favorable clinical results with aminopterin, the forerunner of methotrexate, in acute leukemia in children were reported by Farber et al. (1) in 1948. This work depended on knowledge generated at the American Cyanamid Company, Pearl River, NY, on the structure of folic acid and the chemical synthesis of analogs in addition to the insightful clinical observations of the Farber group (1). This work was done before the role of tetrahydrofolates in the metabolism of single carbon units was known. The present discussion of the current literature on folates is offered in the hope that, given the powerful analytical, structural, molecular genetic, and synthetic methods now available, new approaches to selective toxicity can be generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Farber S, Diamond LK, Mercer RD, Sylvester RF, Jr, Wolff JA. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin) New Engl J Med 1948;238:787–793.

    Article  PubMed  CAS  Google Scholar 

  2. Blalley RL, Benkovic, SJ (eds.). Folates and Pterins, vol. 1, John Wiley Sons, NY, 1984.

    Google Scholar 

  3. Kisliuk RL. The biochemistry of folates, in Sirotnak FM, Burchall JJ, Ensminger WD, Montgomery JA, eds. Folate Antagonists as Therapeutic Agents. vol 1 Academic Press, Orlando, 1984, pp. 1–68.

    Google Scholar 

  4. Shane B. Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 1989;45:263–235.

    Article  PubMed  CAS  Google Scholar 

  5. Wagner C. Biochemical role of folate in cellular metabolism, in Bailey LB (ed.) Folate in Health and Disease. Marcel Dekker, New York, 1995, pp. 23–42.

    Google Scholar 

  6. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998;49:31–62.

    Article  PubMed  CAS  Google Scholar 

  7. Green R, Jacobsen DW. Clinical implications of hyperhomocysteinemia, in Bailey LB (ed.) Folate in Health and Disease. Marcel Dekker, New York, 1995, pp. 75–122.

    Google Scholar 

  8. Wang H, Yoshizumi M, Lai K, Tsai JC, Perrella MA, Haber E, Lee ME. Inhibition of growth and p2lras methylation in vascular endothelial cells by homocysteine but not cysteine. J Biol Chem 1997;272:25,380–25,385.

    Google Scholar 

  9. Scott JM, Wier DG, Kirke PN. Folate and neural tube defects, in Bailey, LB (ed.) Folate in Health and Disease Marcel Dekker, New York, 1995, pp. 329–360.

    Google Scholar 

  10. Sunden SLF, Renduchintala MS, Park EI, Miklasz SD, Garrow TA. Betaine-homocysteine methyl-transferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys 1997;345:171–174.

    Article  PubMed  CAS  Google Scholar 

  11. Green JM, Ballou DP, Matthews RG. Examination of the role of methylenetetrahydrofolate reductase in incorporation of methyltetrahydrofolate into cellular metabolism. FASEB J 1988;2:42–47.

    PubMed  CAS  Google Scholar 

  12. Donaldson KO, Keresztesy JC. Enzymatic conversion of methylenetetrahydrofolate to methyltetrahy-drofolate. J Biol Chem 1962;237:1298–1304.

    PubMed  CAS  Google Scholar 

  13. Herbert V, Sullivan LW, Streiff RR, Friedkin M. Failure of menadione to affect folate utilization in vitamin B1z-deficient human beings. Nature 1964;201:196–197.

    Article  PubMed  CAS  Google Scholar 

  14. Ma J, Stampfer MJ, Hennekens CH, Frosst P, Selhub J, Horsford J, Manilow MR, Willet WC, Rozen R. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of my-ocardial infarction in US physicians. Circulation 1996;94:2410–2416.

    Article  PubMed  CAS  Google Scholar 

  15. Sheppard AC, Matthews RG. Studies on a mutant methylenetetrahydrofolate reductase that is associ-ated with cardiovascular disease in humans. Pteridines 1997;8:68.

    Google Scholar 

  16. Li YN, Gulati S, Baker PJ, Brody LC, Banerjee R, Kruger WD. Cloning, mapping and RNA analysis of the human methionine synthase gene. Hum Mol Genet 1996;5:1851–1858.

    Article  PubMed  CAS  Google Scholar 

  17. Leclerc D, Campeau E, Goyette P, Adjalla CE, Christensen B, Ross M, Eydoux P, Rosenblatt DS, Rozen R, Gravel RA. Human methionine synthase: cDNA cloning and identification of mutations in patients of the cbl/G complementation group of folate/cobalamin disorders. Hum Mol Genet 1996;1867–1874.

    Google Scholar 

  18. Chen LH, Liu M-L, Hwang H-Y, Chen L-S, Korenberg J, Shane B. Human methionine synthase. J Biol Chem 1997;272:3628–3634.

    Article  PubMed  CAS  Google Scholar 

  19. Ludwig ML, Matthews RG. Structure-based perspectives on B12-dependent enzymes. Annu Rev Biochem 1997;66:269–313.

    Article  PubMed  CAS  Google Scholar 

  20. Gulati S, Chen, ZQ, Brody LC, Rosenblatt DS, Banerjee R. Defects in auxiliary redox proteins lead to functional methionine synthase deficiency. J Biol Chem 1997;272:19,171–19,175.

    Google Scholar 

  21. Abels J, Kroes ACM, Ermens AAM, van Kapel J, Schoester M, Spijkers LJM, Lindemans J. Anti-leukemic potential of methyl-cobalamin inactivation by nitrous oxide. Am J Hematol 1990;34:128–131.

    Article  PubMed  CAS  Google Scholar 

  22. Fiskerstrand T, Ueland PM, Refsum H. Response of the methionine synthase system to short-term cul-ture with homocysteine and nitrous oxide and its relation to methionine dependence. Int J Cancer 1997;72:301–306.

    Article  PubMed  CAS  Google Scholar 

  23. Fiskerstrand T, Ueland PM, Refsum H. Folate depletion induced by methotrexate affects methionine synthase activity and its susceptibility to inactivation by nitrous oxide. J Pharm Exp Ther 1997;282:1305–1311.

    CAS  Google Scholar 

  24. Banerjee RV, Matthews RG. Cobalamin-dependent methionine synthase. FASEB J 1990; 4:1450–1459.

    PubMed  CAS  Google Scholar 

  25. McLean GR, Pathare PM, Wilbur DS, Morgan AC, Woodhouse CS, Schrader JW, Ziltener HJ. Cobal-amin analogues modulate the growth of leukemia cells in vitro. Cancer Res 1997; 57:4015–4022.

    CAS  Google Scholar 

  26. Aposhian HV. Enzymatic, methylation of arsenic species and other new approaches to arsenic toxic-ity. Annu Rev Pharmacol 1997;37:397–419.

    Article  CAS  Google Scholar 

  27. Bartolomei MS, Tilghman SM. Genomic imprinting in mammals. Annu Rev Genetics 1997; 31:493–526.

    Article  CAS  Google Scholar 

  28. Capdevila A, Decha-Umphai W, Song, KH, Borchardt RT, Wagner C. Pancreatic exocrine secretion is blocked by inhibitors of methylation. Arch Biochem Biophys 1997;345:47–55.

    Article  PubMed  CAS  Google Scholar 

  29. Krupenko NI, Wagner G. Transport of rat liver glycine-N-methyltransferase into rat liver nuclei. JBiol Chem 1997;272:27,140–27,146.

    Google Scholar 

  30. Pogribny IP, Miller BJ, James SJ. Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat. Cancer Lett 1997;115:31–38.

    Article  PubMed  CAS  Google Scholar 

  31. Kim YI, Pogribny IP, Basnakian AG, Miller JW, Selhub J, James SJ, Mason JB. Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53 tumor suppressor gene. Am J Clin Nutr 1997;65:46–52.

    PubMed  CAS  Google Scholar 

  32. Ruan H, Shantz LM, Pegg AE, Morris DR. The upstream open reading frame of the mRNA encoding S-adenosylmethionine decarboxylase is a polyamine-responsive translational control element. J Biol Chem 1996;271:29,576–29,582.

    Google Scholar 

  33. Kenyon SH, Nicolaou A, Ast T, Gibbons WA. Stimulation in vitro of vitamin B12-dependent methio-nine synthase by polyamines. Biochem J 1996;316:661–665.

    PubMed  CAS  Google Scholar 

  34. Kramer DL, Fogel-Petrovic M, Diegelman P, Cooley JM, Bernacki RJ, McManis JS, Bergerson RJ, Porter CW. Effects of novel spermine analogues on cell cycle suppression and apoptosis in MALME-3M human melanoma cells. Cancer Res 1997;57:5521–5527.

    PubMed  CAS  Google Scholar 

  35. Houghton JA, Harwood FG, Tillman DM. Thymineless death in colon carcinoma cells is mediated via Fas signalling. Proc Natl Acad Sci USA 1997;94:8144–8149.

    Article  PubMed  CAS  Google Scholar 

  36. O’Dwyer PJ, King SA, Hoth DF, Leyland-Jones B. Role of thymidine in biochemical modulation. Cancer Res 1987;47:3911–3919.

    PubMed  Google Scholar 

  37. Schirch V. Folates in serine and glycine metabolism. In Folates and Pterins, vol. 1 (Blakley RL, Benkovic SJ, eds) Wiley, New York, 1984, pp. 399–432.

    Google Scholar 

  38. Santi DV, Danenberg PV. Folates in pyrimidine nucleotide biosynthesis, in Folates and Pterins, vol. 1, (Blakley RL, Benkovic SJ, eds.) Wiley, New York, 1984;345–398.

    Google Scholar 

  39. Blakley RL. Dihydrofolate reductase, In (Blakley RL, Benkovic SJ, eds) Folates and Pterins. vol. 1 Wiley, New York, 1984, pp. 191–254.

    Google Scholar 

  40. Hayasaka K, Nano K, Takada G, Okamura-Ikeda K, Motokawa Y. Isolation and sequence determina-tion of cDNA encoding human T-protein of the glycine cleavage system. Biochem Biophys Res Com-mun 1993;192:766–771.

    Article  CAS  Google Scholar 

  41. Garrow TA, Brenner AA, Whitehead VM, Chen X-N, Duncan RG, Korenberg JR, Shane B. Cloning of human cDNAs encoding mitochondrial and cystosolic serine hydroxymethyltransferases and chro-mosomal localization. J Biol Chem 1993;268:11,910–11,916.

    Google Scholar 

  42. Stover PJ, Chen LH, Suh JR, Stover DM, Keyomarsi K, Shane B. Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. J Biol Chem 1997;272:1842–1848.

    Article  PubMed  CAS  Google Scholar 

  43. Matthews RG, Ross J, Baugh CM, Cook JD and Davis L. Interactions of pig liver serine hydrox-ymethyltransferase with methyltetrahydropteroylpolyglutamate inhibitors and with tetrahy-dropteroylpolyglutamate substrates. Biochemistry 1982;21:1230–1238.

    Article  PubMed  CAS  Google Scholar 

  44. Strong WB, Cook R, Schirch V. Interaction of tetrahydropteroylpolyglutamates with two enzymes from mitochondria. Biochemistry 1989;28:106–114.

    Article  PubMed  CAS  Google Scholar 

  45. Stover P, Schirch V. Serine hydroxymethyltransferase catalyzes the hydrolysis of 5, 10-methenylte-trahydrofolate to 5-formyltetrahydrofolate. J Biol Chem 1990;265:14,227–14,233.

    Google Scholar 

  46. Stover P, Schirch V. Enzymatic mechanism for the hydrolysis of 5,10-methenyltetrahydropteroylglu-tamate to 5-formyltetrahydropteroylglutamate by serine hydroxymethyltransferase. Biochemistry 1992;31:2155–2164.

    Article  PubMed  CAS  Google Scholar 

  47. Stover P, Schirch V. 5-Formyltetrahydrofolate polyglutamates are slow tight binding inhibitors of ser-ine hydroxymethyltransferase. J Biol Chem 1991;266:1543–1550.

    PubMed  CAS  Google Scholar 

  48. Friedkin M, Plante LT, Crawford EJ, Crumm M. Inhibition of thymidylate synthetase and dihydrofo-late reductase by naturally occurring oligoglutamate derivatives of folic acid. J Biol Chem 1975;250:5614–5621.

    PubMed  CAS  Google Scholar 

  49. Bertrand R, Jolivet J. Methenyltetrahydrofolate synthetase prevents the inhibition of phosphoribosyl 5-aminoimidazole 4-carboxamide ribonucleotide formyltransferase by 5-formyltetrahydrofolate polyglutamates. J Biol Chem 1989;264:8843–8846.

    PubMed  CAS  Google Scholar 

  50. Stover P, Schirch V. The metabolic role of leucovorin. Trends Biochem Sci 1993;18:102–106.

    Article  PubMed  CAS  Google Scholar 

  51. Girgis S, Suh JR, Jolivet J, Stover PJ. 5-Formyltetrahydrofolate regulates homocysteine remethylation in human neuroblastoma. J Biol Chem 1997;272:4729–4734.

    Article  PubMed  CAS  Google Scholar 

  52. Wang EA, Kallen R, Walsh C. Mechanism-based inactivation of serine transhydroxymethylases by D-fluoroalanine and related amino acids. J Biol Chem 1981;256:6917–6926.

    PubMed  CAS  Google Scholar 

  53. Webb HK, Matthews RG. 4-Chlorothreonine is substrate, mechanistic probe and mechanism-based in-hibitor of serine hydroxymethyltransferase. J Biol Chem 1995;270:17,204–17,209.

    Google Scholar 

  54. Carreras CW, Santi DV. The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 1995;64:721–762.

    Article  PubMed  CAS  Google Scholar 

  55. Elcock AH, Potter MJ, Matthews DA, Knighton DR, McCammon JA. Electrostatic channeling in the bifunctional enzyme dihydrofolate reductase-thymidylate synthase. J Mol Biol 1996;262:370–372.

    Article  PubMed  CAS  Google Scholar 

  56. Davisson VJ, Sirawaraporn W, Santi DV. Expression of human thymidylate synthase in Escherichia coli. J Biol Chem 1989;264:9145–9148.

    CAS  Google Scholar 

  57. Pedersen-Lane J, Maley GF, Chu E, Maley F. High-level expression of human thymidylate synthase. Protein Expression Purification 1997;10:256–262.

    Article  PubMed  CAS  Google Scholar 

  58. Schiffer CA, Clifton IJ, Davisson VJ, Santi DV, Stroud RM. Crystal structure of human thymidylate synthase: a structural mechanism for guiding substrates into the active site. Biochemistry 1995;34:16,279–16,287.

    Google Scholar 

  59. Samsonoff WA, Reston J, McKee M, O’Connor B, Galivan J, Maley G, Maley F. Intracellular loca-tion of thymidylate synthase and its state of phosphorylation. J Biol Chem 1997;272:13,281–13,285.

    Google Scholar 

  60. Chu E, Voeller DM, Jones KL, Takechi T, Maley GF, Maley F, Sega1S, Allegra CJ. Identification of a thymidylate synthase ribonucleoprotein complex in human colon cancer cells. Mol Cell Biol 1994;14:207–213.

    PubMed  CAS  Google Scholar 

  61. Horie N, Takeishi K. Identification of functional elements in the promoter region of the human gene for thymidylate synthase and nuclear factors that regulate the expression of the gene. J Biol Chem 1997;272:18,375–18,381.

    Google Scholar 

  62. Ladner RD, Caradonna SJ. The human dUTPase gene encodes both nuclear and mitochondrial iso-forms. J Biol Chem 1997;272:19,072–19,080.

    Google Scholar 

  63. Mol CD, Harris JM, Mcintosh EM, Tainer JA. Human dUTP pyrophosphatase: uracil recognition by a β-hairpin and active sites formed by three separate subunits. Structure 1996;4:1077–1092.

    Article  PubMed  CAS  Google Scholar 

  64. Blakley RL. Eukaryotic dihydrofolate reductase. Adv Enzymol Mol Biol 1995;70:23–102.

    CAS  Google Scholar 

  65. Davies JF, II, Delcamp TJ, Prendergast NJ, Ashford VA, Freisheim JH, Kraut J. Crystal structures of recombinant human dihydrofolate reductase complexed with folate and 5-deazafolate. Biochemistry 1990;29:9467–9479.

    Article  PubMed  CAS  Google Scholar 

  66. Stockman BJ, Nirmala NR, Wagner G, Delcamp TJ, De Yarman MT, Freisheim JH. Sequence-spe-cific 1H and 15N resonance assignments for human dihydrofolate reductase in solution. Biochemistry 1992;31:218–229.

    Article  PubMed  CAS  Google Scholar 

  67. Spencer HT, Sleep SEH, Rehg JH, Blakley RL, Sorrentino BP. A gene transfer strategy for making bone marrow cells resistant to methotrexate. Blood 1996;87:2579–2587.

    PubMed  CAS  Google Scholar 

  68. Zhao SC, Banerjee D, Mineshi S, Bertino JR. Post-transplant methotrexate administration leads to im-proved curability of mice bearing a mammary tumor transplanted with marrow transduced with a mu-tant human dihydrofolate reductase cDNA. Hum Gene The 1997;8:903–909.

    CAS  Google Scholar 

  69. Kumar P, Kisliuk RL, Gaumont Y, Freisheim JH, Nair MG. Inhibition of human dihydrofolate reduc-tase by antifolyl polyglutamates. Biochem Pharmacol 1989;38:541–543.

    Article  PubMed  CAS  Google Scholar 

  70. Rosowsky A, Galivan J, Beardsley GP, Bader H, O’Conner BM, Rusello , Moroson BA, DeYarman MT, Kerwar SS, Freisheim JH. Biochemical and biological studies on 2-desamino-2-methyl- aminopterin, an antifolate the polyglutamates of which are more potent than the monoglutamate against three key enzymes of folate metabolism. Cancer Res 1992;52:2148–2155.

    PubMed  CAS  Google Scholar 

  71. Chu E, Takimoto CH, Voeller D, Grem JI, Allegra CJ. Specific binding of human dihydrofolate re-ductase protein to dihydrofolate reductase messenger RNA in vitro. Biochemistry 1993;32: 4756–4760.

    Article  CAS  Google Scholar 

  72. Erican-Abali EA, Banerjee D, Waltham MC, Skacel N, Scotto KW, Bertino JR. Dihydrofolate reduc-tase protein inhibits its own translation by binding to dihydrofolate reductase mRNA sequences within the coding region. Biochemistry 1997;36:12,317–12,322.

    Google Scholar 

  73. Fry CJ, Slansky JE, Farnham PJ. Position-dependent transcriptional regulation of the murine dihydro-folate reductase promoter by the E2F transactivation domain. Mol Cell Biol 1997;17:1966–1976.

    PubMed  CAS  Google Scholar 

  74. MacKenzie RE. Biogenesis and interconversion of substituted tetrahydrofolates, in (Blakley RL, Benkovic SJ, eds) Folates and Pterins vol. 1 Wiley, New York, 1984, pp. 256–306.

    Google Scholar 

  75. Hum DW, Mackenzie RE. Expression of active domains of a human folate-dependent trifunctional en-zyme in Escherichia coli. Protein Eng 1991;4:493–500.

    Article  CAS  Google Scholar 

  76. Strong WB, Schirch V. In vitro conversion of formate to serine: effect of tetrahydropteroylpolygluta-mates and serine hydroxymethyltransferase on the rate of 10-formyltetrahydrofolate synthetase. Bio-chemistry 1989;28:9430–9439.

    CAS  Google Scholar 

  77. Pelletier JN, Mackenzie RE. Binding and interconversion of tetrahydrofolates at a single site in the bi-functional methylenetetrahydrofolate dehydrogenase/cyclohydrolase. Biochemistrγ 1995;34:12, 673–12,680.

    Google Scholar 

  78. Pawelek PD, MacKenzie RE. Methenyltetrahydrofolate cyclohydrolase is rate limiting for the enzy-matic conversion of 10-formyltetrahydrofolate to 5,10-methylenetetrahydrofolate in bifunctional de-hydrogenase-cyclohydrolase enzymes. Biochemistry 1998;37:1109–1115.

    Article  PubMed  CAS  Google Scholar 

  79. Pawelek PD, MacKenzie RE, Methylenetetrahydrofolate dehydrogenase-cyclohydrolase from Photo-bacterium phosphoreum shares properties with a mammalian mitochondrial homologue. Biochim. Biophys Acta 1996;1296:47–54.

    Article  PubMed  Google Scholar 

  80. Yang X, MacKenzie RE. NAD-dependent methylenetetrahydrofolate dehydrogenase-methenylte-trahydrofolate cyclohydrolase is the mammalian homolog of the mitochondrial enzyme encoded by the yeast MIS1 gene. Biochemistry, 1993;32:11,118–11,123.

    Google Scholar 

  81. Peri KG, Belanger C, MacKenzie RE. Nucleotide sequence of the human NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase. Nucleic Acids Res 1989;17:8853.

    Article  PubMed  CAS  Google Scholar 

  82. Turner RB, Lansford EM Jr., Ravel JM, Shive W. A metabolic relationship of spermine to folinic acid and thymidine. Biochemistry 1963;2:163–167.

    Article  PubMed  CAS  Google Scholar 

  83. Lansford EM, Jr., Turner RB, Weathersbee CJ, Shive W. Stimulation by spermine of tetrahydrofolate formylase activity. J Biol Chem 1964;239:497–501.

    PubMed  CAS  Google Scholar 

  84. Krupenko SA, Wagner C, Cook RI. Recombinant 10-formyltetrahydrofolate dehydrogenase catalyzes both dehydrogenase and hydrolase reactions utilizing the synthetic substrate 10-formyl-5,8-dideazafo-late. Biochem J 1995;306:651–655.

    PubMed  CAS  Google Scholar 

  85. Krupenko SA, Wagner C, and Cook RJ. Expression, purification and properties of the aldehyde de-hydrogenase homologous carboxyl-terminal domain of rat 10-formyltetrahydrofolate dehydrogenase. JBiol Chem 1997;272:10,266–10,272.

    Google Scholar 

  86. Krupenko SA, Wagner C, Cook RJ. Domain structure of rat 10-formyltetrahydrofolate dehydroge-nase. J Biol Chem 1997;272:10,273–10,278.

    Google Scholar 

  87. Kim DW, Huang T, Schirch D, Schirch V. Properties of tetrahydropteroylpentaglutamate bound to 10-formyltetrahydrofolate dehydrogenase. Biochemistry 1996;35:15,772–15,783.

    Google Scholar 

  88. Cook RJ, Wagner C. Enzymatic activities of rat liver cytosol 10-formyltetrahydrofolate dehydroge-nase. Arch Biochem Biophys, 1995;321:336–344.

    Article  PubMed  CAS  Google Scholar 

  89. Champion KM, Cook RJ, Tollaksen SL, Glometti CS. Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice. Proc Natl Acad Sci USA 1994;91:11,338–11,342.

    Google Scholar 

  90. Jolivet J. Human 5,10-methenyltetrahydrofolate synthetase. Methods Enzymol 1997;281:162–170.

    Article  PubMed  CAS  Google Scholar 

  91. Dayan A, Bertrand R, Beauchemin M, Chahla D, Mamo A, Filion M, Skup D, Massie B, Jolivet J. Cloning and characterization of the human 5, l0-methenyltetrahydrofolate synthetase-encoding cDNA. Gene 1995;165:307–311.

    Article  PubMed  CAS  Google Scholar 

  92. Maras B, Stover P, Valiante S, Barra D, Schirch V. Primary structure and tetrahydropteroylglutamate binding site of rabbit liver cytosolic 5,10-methenyltetrahydrofolate synthetase. J Biol Chem 1994;269:18,429–18,433.

    Google Scholar 

  93. Huang T, Schirch V. Mechanism for the coupling of ATP hydrolysis to the conversion of 5-formylte-trahydrofolate to 5,10-methenyltetrahydrofolate. J Biol Chem 1995;270:22,296–22,230.

    Google Scholar 

  94. Rowe PB. Folates in the biosynthesis and degradation of purines, in Folates and Pterins, vol. 1 (Blak-ley, RL, Benkovic SJ, eds) Wiley, New York, 1984, pp. 329–344.

    Google Scholar 

  95. Kan JL, Moran RG. Intronic polyadenylation in the human glycinamide ribonucleotide formyltrans-ferase gene. Nucleic Acids Res 1997;25:3118–3123.

    Article  PubMed  CAS  Google Scholar 

  96. Caperelli CA, Giroux EL. The human glycinamide ribonucleotide transfonnylase domain: purifica-tion, characterization and kinetic mechanism. Arch Biochem Biophys 1997;341:98–103.

    Article  PubMed  CAS  Google Scholar 

  97. Sanghani S, Moran RG. Tight binding of folate substrates and inhibitors to recombinant mouse glyci-namide ribonucleotide formyltransferase. Biochemistry 1997;36:10506–10516.

    Article  PubMed  CAS  Google Scholar 

  98. Pouliot JM, Beardsley GP, Almassey RJ. The polyglutamate binding region of human glycinamide ribonucleotide formyltransferase (hGARFT) spans the putative active site cleft. Pteridines 1997;8:129.

    Google Scholar 

  99. Rayl EA, Moroson BA, Beardsley GP. The human purH gene product, 5-aminoimidazole-4-carbox-amide ribonucleotide formyltransferase/IMP cyclohydrolase. Cloning, sequencing, expression, purifi-cation, kinetic analysis and domain mapping. J Biol Chem 1996;271:2225–2233.

    Article  PubMed  CAS  Google Scholar 

  100. Allegra CJ, Drake JC, Jolivet J, Chabner BA. Inhibition of phosphoribosylaminoimidazolecarboxam-ide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc Natl Acad Sci USA 1985;82:4881–4885.

    Article  PubMed  CAS  Google Scholar 

  101. Liu L, Nair MG, Kisliuk RL. Novel nonclassical inhibitors of glycinamide ribonucleotide fonnyl-transferase: 10-formyl and 10-hydroxymethyl derivatives of 5,8,10-trideazapteroic acid. J Mol Recog-nition 1996;9:169–174.

    Article  CAS  Google Scholar 

  102. Gunn K, Beardsley GP, Worland S, Davies J, Nair MG. Identification of the substrate binding and cat-alytic sites of the 5-aminoimidazolecarboxamide ribonucleotide (AICAR) formyltransferase activity in the human pur H gene product. Pteridines 1997;8:130.

    Google Scholar 

  103. Staben C, Rabinowitz JC. Formation of formylmethionyl-tRNA and initiation of protein synthesis, in Folates and Pterins, vol. 1 (Blakley, RL, Benkovic SJ, eds.) Wiley, New York, 1984, pp. 457–495.

    Google Scholar 

  104. Schmitt E, Blanquet S, Mechulam Y. Structure of crystalline Escherichia coli methionyl-tRNAfmet formyltransferase: comparison with glycinamide ribonucleotide formyltransferase. EMBO J 1996;15:4749–4758.

    PubMed  CAS  Google Scholar 

  105. Murley LL, Mejia NR, MacKenzie RE. The nucleotide sequence of porcine formiminotransferase cy-clodeaminase. Expression and purification from Escherichia coli. J Biol Chem 1993;268: 22820–22824.

    CAS  Google Scholar 

  106. Murley LL, MacKenzie RE. The two monofunctional domains of octameric formiminotransferase-cy-clodeaminase exist as dimers. Biochemistry 1995;34:10,358–10,364.

    Google Scholar 

  107. Fujiwara K, Okamura-Ikeda K, Packer L, Motokawa Y. Synthesis and characterization of seleno-lipoylated H-protein of the glycine cleavage system. J Biol Chem 1997;272:19,880–19,883.

    Google Scholar 

  108. Johnson M, Yang HS, Johanning GL, Patel MS. Characterization of the mouse dihydrolipoamide de-hydrogenase (Dld) gene: genomic structure, promoter sequence, and chromosomal localization. Ge-nomics 1997;41:320–326.

    CAS  Google Scholar 

  109. Mabrouk GM, Bronsan JT. Activation of the hepatic glycine cleavage system by glucagon and glucagon-related peptides. Can J Physiol Pharmacol 1997;75:1096–1100.

    Article  PubMed  CAS  Google Scholar 

  110. Kure S, Tada K, Narisawa K. Nonketotic hyperglycinemia: biochemical molecular and neurological aspects. Jpn J Hum Genet 1997;42:13–22.

    Article  PubMed  CAS  Google Scholar 

  111. Iwama I, Takahashi K, Kure S, Hayashi F, Narisawa K, Tada K, Mizoguchi M, Takashima S, Tomita U, Nishikawa T. Depletion of cerebral D-serine in non-ketotic hyperglycinemia: possible involvement of glycine cleavage system in control of endogenous D-serine. Biochem Biophys Res Commun 1997;231:793–796.

    Article  PubMed  CAS  Google Scholar 

  112. Wittwer AJ, Wagner C. Identification of the folate-binding proteins of rat liver mitochondria as dimethylglycine dehydrogenase and sarcosine dehydrogenase. J Biol Chem 1981;256:4102–4108, 4109–4115.

    Google Scholar 

  113. Wagner C, Briggs WT, Cook RJ. Covalent binding of folic acid to dimethylglycine dehydrogenase. Arch Biochem Biophys 1984;233:457–461.

    Article  PubMed  CAS  Google Scholar 

  114. Porter DH, Cook RJ, Wagner C. Enzymatic properties of dimethylglycine dehydrogenase and sarco-sine dehydrogenase from rat liver. Arch Biochem Biophys 1985;243:396–407.

    Article  PubMed  CAS  Google Scholar 

  115. Lang H, Polster M, Brandsch R. Rat liver dimethylglycine dehydrogenase: flavinylation of the enzyme in hepatocytes in primary culture and characterization of a complementary DNA clone. Eur J Biochem 1991;198:793–800.

    Article  PubMed  CAS  Google Scholar 

  116. Lang R, Minaian K, Freudenberg N, Hoffman R, Brandsch R. Tissue specificity of rat mitochondrial dimethyglycine dehydrogenase expression. Biochem J 1994;299:393–398.

    PubMed  CAS  Google Scholar 

  117. Otto A, Stoltz M, Sailer H-P, Brandsch R. Biogenesis of the covalently flavinylated mitochondrial en-zyme dimethylglycine dehydrogenase. J Biol Chem 1996;271:9823–9829.

    Article  PubMed  CAS  Google Scholar 

  118. Brunialti AL, Harding CO, Wolff JA, Guenet JL. The mouse mutation sarcosinemia (sar) maps to chromosome 2 in a region homologous to human 9q33–q34. Genomics 1996;36:182–184.

    Article  PubMed  CAS  Google Scholar 

  119. Garrow TA, Admon A, Shane B. Expression cloning of a human cDNA encoding folylpoly(γ-gluta-mate) synthetase and determination of its primary structure. Proc Natl Acad Sci USA 1992;89:9151–9155.

    Article  PubMed  CAS  Google Scholar 

  120. Chen L, Qi H, Korenberg J, Garrow TA, Choi Y-J, Shane B. Purification and properties of human cy-tosolic folypoly-γ-glutamate synthetase and organization, localization, and differential splicing of its gene. J Biol Chem 1996;271:13,077–13,087.

    Google Scholar 

  121. Freemantle SJ, Taylor SM, Krystal G, Moran RG. Upstream organization of and multiple transcripts from the human folylpoly-γ-glutamate synthetase gene. J Biol Chem 1995;270:9579–9584.

    Article  PubMed  CAS  Google Scholar 

  122. Freemantle SJ, Moran RG. Transcription of the human folylpoly-γ-glutamate synthetase gene. J Biol Chem 1997;272:25,373–25,379.

    Google Scholar 

  123. Roy K, Egan MG, Sirlin S, Sirotnak FM. Posttranscriptionally mediated decreases in folypolygluta-mate synthetase gene expression in some folate analogue resistant variants of the L1210 cell. Evidence for an altered cognate mRNA in the variants affecting the rate of de novo synthesis of the enzyme. J Biol Chem 1997;272:6903–6908.

    Article  PubMed  CAS  Google Scholar 

  124. McGuire JJ, Coward JK. Pteroylpolyglutamates: biosynthesis, degradation and function, in Folates and Pterins, vol. 1 (Blakley RL, Benkovic SJ, vol. 1). Wiley, New York, 1984, pp. 135–190.

    Google Scholar 

  125. Samuels LL, Goutas LJ, Priest DG, Piper JR, Sirotnak FM. Hydrolytic cleavage of methotexate γ-polyglutamates by folylpolyglutamate hydrolase derived from various tumors and normal tissues of the mouse. Cancer Res. 1986;46:2230–2235.

    PubMed  CAS  Google Scholar 

  126. Yao R, Rhee MS, Galivan J. Effects of γ-glutamyl hydrolase on folyl and antifolylpolyglutamates in cultured H35 hepatoma cells. Mol Pharmacol 1995;48:505–511.

    PubMed  CAS  Google Scholar 

  127. Whitehead VM, Vuchich MJ, Lauer SJ, Mahoney D, Carroll AJ, Shuster JJ, Esseltine DW, Payment C, Look AT, Akabutu J, Bowen T, Taylor LD, Camitta B, Pullen DJ. Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (> 50 chromosomes) B-lineage acute lymphoblastic leukemia: a pediatric oncology group study. Blood 1992; 80: 1316–1323.

    PubMed  CAS  Google Scholar 

  128. Longo GSA, Gorlick R, Tong WP, Lin SL, Steinherz P, Bertino JR. γ-Glutamyl hydrolase and folylpolyglutamate synthetase activities predict polyglutamylation of methotrexate in acute leukemias. Oncol Res 1997;9:259–263.

    PubMed  CAS  Google Scholar 

  129. Yao R, Schneider E, Ryan TJ, Galivan J. Human γ-glutamyl hydrolase: cloning and characterization of the enzyme expressed in vitro. Proc Natl Acad Sci USA 1996;93:10,134–10,138.

    Google Scholar 

  130. Barrueco JR, O’Leary DF, Sirotnak FM. Facilitated transport of methotrexate polyglutamates into lysosomes derived from S180 cells. J Biol Chem 1992;267:19,986–19,991.

    Google Scholar 

  131. Yao R, Nimec Z, Ryan TJ, Galivan J. Identification, cloning, and sequencing of a cDNA coding for rat γ-glutamyl hydrolase. J Biol Chem 1996;271:8525–8528.

    Article  PubMed  CAS  Google Scholar 

  132. Heston WD. Characterization and glutamyl preferring carboxypeptidase function of prostate specific membrane antigen: a novel folate hydrolase. Urology 1997;49:104–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kisliuk, R.L. (1999). Folate Biochemistry in Relation to Antifolate Selectivity. In: Jackman, A.L. (eds) Antifolate Drugs in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-725-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-725-3_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4521-4

  • Online ISBN: 978-1-59259-725-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics