Skip to main content

DNA Repair in Bacteriophage

  • Chapter
DNA Damage and Repair

Part of the book series: Contemporary Cancer Research ((CCR))

  • 277 Accesses

Abstract

Starting with the very first studies on DNA repair in 1947, most of the earliest work, involving recombinational repair, photoreactivation, and excision repair, were carried out with bacteriophage (phage) T4 (reviewed in 4,6). Repair processes in phage appear to be similar to DNA repair processes in other organsims, and genes necessary for DNA repair in phage, such as phage T4 genes denV and uvsX, are homologous to repair genes in bacteria and eucaryotes (see Sub heading 7.). Thus, study of DNA repair processes in phage illuminates the mechanisms and adaptive functions of similar, but often more complex, processes in bacteria and eucaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, J., and B. Alberts. 1994. Purification and characterization of bacteriophage T4 gene 59 protein. A DNA helicase assembly protein involved in DNA replication. J. Biol. Chem. 269: 9203–9210.

    Google Scholar 

  2. Barton, N. H., and B. Charlesworth. 1998. Why sex and recombination? Science 281: 1986–1990.

    Article  PubMed  CAS  Google Scholar 

  3. Basu, R., and A. Ghosh. 1987. Inducible reactivation of UV-irradiated cholera phage e5 in Vibrio cholerae. Mol. Gen. Genet. 209: 175–178.

    Article  CAS  Google Scholar 

  4. Bernstein, C. 1981. Deoxyribonucleic acid repair in bacteriophage. Microbiol. Rev. 45: 72–98.

    PubMed  CAS  Google Scholar 

  5. Bernstein, C. 1987. Damage in DNA of an infecting phage T4 shifts reproduction from asexual to sexual allowing rescue of its genes. Genet. Res. 49: 183–189.

    Article  PubMed  CAS  Google Scholar 

  6. Bernstein, C., and S. S. Wallace. 1983. DNA repair, in Bacteriophage T4, (Mathews, C. K., Mosig, E., and Kutter, E., eds.), American Society for Microbiology, Washington, DC, pp. 138–151.

    Google Scholar 

  7. Bernstein, H., Byerly, H. C., Hopf, F. A., and R. E. Michod. 1985. Genetic damage, mutation, and the evolution of sex. Science 229: 1277–1281.

    Article  PubMed  CAS  Google Scholar 

  8. Bernstein, H., F. A. Hopf, and R. E. Michod. 1987. The molecular basis of the evolution of sex. Adv. Genet. 24: 323–370.

    CAS  Google Scholar 

  9. Birkenbihl, R. P., and B. Kemper. 1998. Localization and characterization of the dimerization domain of Holliday structure resolving endonuclease VII of phage T4. J. Mol. Biol. 280: 73–83.

    Article  PubMed  CAS  Google Scholar 

  10. Blinov, V. M., E. V. Koonin, A. E. Gorbalenya, A. V. Kaliman, and V. M. Kryukov. 1989. Two early genes of bacteriophage T5 encode proteins containing an NTP-binding sequence motif and probably involved in DNA replication, recombinbation and repair. FEBS Lett. 252: 47–52.

    Article  PubMed  CAS  Google Scholar 

  11. Bogenhagen, D. F., and Pinz, K. G. 1998. The action of DNA ligase at abasic sites in DNA. J. Biol. Chem. 273: 7888–7893.

    Article  PubMed  CAS  Google Scholar 

  12. Carles-Kinch, K., George, J. W., and Kreuzer, K. N. 1997. Bacteriophage T4 UvsW protein is a helicase involved in recombination, repair and the regulation of DNA replication origins. EMBO J. 16: 4142–4151.

    Article  PubMed  CAS  Google Scholar 

  13. Chary, P., and R. S. Lloyd. 1995. In vitro replication by prokaryotic and eukaryotic polymerases on DNA templates containing site-specific and stereospecific benzo[alpyrene-7,8-dihydrodiol9,10-epoxide adducts. Nucleic Acids Res. 23: 1398–1405.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, D., and Bernstein, C. 1987. Recombinational repair of hydrogen peroxide-induced damages in DNA of phage T4. Mutat. Res. 184: 87–98.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, D. S., and H. Bernstein. 1988. Yeast gene RAD52 can substitute for phage T4 gene 46 and 47 in carrying out recombination and DNA repair. Proc. Natl. Acad. Sci. USA 85: 6821–6825.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng, C., and S. Shuman. 1997. Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae. Nucleic Acids Res. 25: 1369–1374.

    Article  CAS  Google Scholar 

  17. Colicos, M. A., Y. Haj-Ahmad, K. Valerie, E. E. Henderson, and A. J. Rainbow. 1991. Construction of a recombinant adenovirus containing the denV gene from bacteriophage T4 which can partially restore the DNA repair deficiency in xeroderma pigmentosum fibroblasts. Carcinogenesis 12: 249–255.

    Article  PubMed  CAS  Google Scholar 

  18. Conkling, M. A., and J. W. Drake. 1984. Isolation and characterization of conditional alleles of bacteriophage T4 genes uvsX and uvsY. Genetics 107: 505–523.

    PubMed  CAS  Google Scholar 

  19. Cox, M. M. 1993. Relating biochemistry to biology: how the recombinational repair function of RecA protein is manifested in its molecular properties. Bio Essays 15: 617–623.

    CAS  Google Scholar 

  20. Derr, L. K., and K. N. Kreuzer. 1990. Expression and function of the uvsW gene of bacteriophage T4. J. Mol Biol. 214: 643–656.

    Article  PubMed  CAS  Google Scholar 

  21. Dong, F., E. P. Gogol, and P. H. von Hippel. 1995. The phage T4-coded DNA replication helicase (Gp41) forms a hexamer upon activation by nucleoside triphosphate. J. Biol. Chem. 270: 7462–7473.

    Article  PubMed  CAS  Google Scholar 

  22. Drake, J. W. 1988. Bacteriophage T4 DNA polymerase determines the amount and specificity of ultraviolet mutagenesis. Mol. Gen. Genet. 214: 547–552.

    Article  PubMed  CAS  Google Scholar 

  23. Formosa, T., and B. M. Alberts. 1986. Purification and characterization of the T4 bacteriophage UvsX protein. J. Biol. Chem. 261: 6107–6118.

    PubMed  CAS  Google Scholar 

  24. Francis, M. A., P. S. Bagga. R. S. Athwal, and A. J. Rainbow. 1997. Incomplete complementation of the DNA repair defect in cockayne syndrome cells by the denV gene from bacteriophage T4 suggests a deficiency in base excision repair. Mutat. Res. 385: 59–74.

    Article  PubMed  CAS  Google Scholar 

  25. Furuta, M., J. O. Schrader, H. S. Schrader, T. A. Kokjohn, S. Nyaga, A. K. McCullough, et al. J. L. Van Etten. 1997. Chlorella virus PBCV-1 encodes a homolog of the bacteriophage T4 UV damage repair gene deny. Appl. Environ. Microbiol. 63: 1551–1556.

    Google Scholar 

  26. George, J. W., and K. N. Kreuzer. 1996. Repair of double-strand breaks in bacteriophage T4 by a mechanism that involves extensive replication. Genetics 143: 1507–1520.

    PubMed  CAS  Google Scholar 

  27. Giraud-Panis, M. J., D. R. Duckett, and D. M. Lilley. 1995. The modular character of a DNA junction-resolving enzyme: a zinc-binding motif in bacteriophage T4 endonuclease VII. J. Mol. Biol 252: 596–610.

    Article  PubMed  CAS  Google Scholar 

  28. Harris, L. D., and J. Griffith. 1989. UvsY protein of bacteriophage T4 is an accessory protein for in vitro catalysis of strand exchange. J. Mol. Biol. 206: 19–27.

    Article  PubMed  CAS  Google Scholar 

  29. Holmquist, G. P. 1998. Endogenous lesions, S-phase-independent spontaneous mutations, and evolutionary strategies for base excision repair. Mutat. Res. 400: 59–68.

    Article  PubMed  CAS  Google Scholar 

  30. Honda, M. 1987. Genetic recombination between closely linked markers of bacteriophage T4. IV. Mutations which interfere with mismatch repair. Jpn. J. Exp. Med. 57: 117–124.

    PubMed  CAS  Google Scholar 

  31. Huff, A. C., J. K. Leatherwood, and K. N. Kreuzer. 1989. Bacteriophage T4 DNA topoisomerase is the target of the antitumor agent 4’-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) in T4-infected Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 1307–1311.

    Article  PubMed  CAS  Google Scholar 

  32. Hyman, P. 1983. Gene 49 endonuclease VII is not essential for multiplicity reactivation of bacteriophage T4. Mol. Gen Genet. 192: 512–514.

    Article  PubMed  CAS  Google Scholar 

  33. Hyman, P. 1993. The genetics of the Luria-Latarjet effect in bacteriophage T4: evidence for the involvement of multiple DNA repair pathways. Genet. Res., Camb. 62: 1–9.

    Article  CAS  Google Scholar 

  34. Jiang, H., F. Salinas, and T. Kodadek. 1997. The gene 32 single-stranded DNA-binding protein is not bound stably to the phage T4 presynaptic filament. Biochem. Biophys. Res. Commun. 231: 600–605.

    Article  PubMed  CAS  Google Scholar 

  35. Karska-Wysocki, B., and M. D. Mamet-Bratley. 1984. Multiplicity reactivation of bacteriophage T7 inactivated by methyl methanesulfonate. J. Virol. 52: 1009–1010.

    PubMed  CAS  Google Scholar 

  36. Kemper, B. 1998. Branched DNA resolving enzymes (X-solvases), in DNA Damage and Repair, vol. 1, DNA Repair in Procaryotes and Eucaryotes ( Nickoloff, J. A., and Hoekstra, M. E eds.), Humana Press, Totowa, NJ, pp. 179–204.

    Chapter  Google Scholar 

  37. Kibitel, J. T., V. Yee, and D. B. Yarosh. 1991. Enhancement of ultraviolet-DNA repair in denV gene transfectants and T4 endonuclease V-liposome recipients. Photochem. Photobiol. 54: 753–760.

    Article  PubMed  CAS  Google Scholar 

  38. Kodadek, T. 1990. Functional interactions between phage T4 and E. coli DNA-binding proteins during the presynapsis phase of homologous recombination. Biochem Biophys. Res. Commun. 172: 804–810.

    CAS  Google Scholar 

  39. Kodadek, T., and B. M. Alberts. 1987. Stimulation of protein-directed strand exchange by a DNA helicase. Nature 326: 312–314.

    Article  PubMed  CAS  Google Scholar 

  40. Kodadek, T., and M. L. Wong. 1990. Homologous pairing in vitro initiated by DNA synthesis. Biochem. Biophys. Res. Commun. 169: 302–309.

    Article  PubMed  CAS  Google Scholar 

  41. Kong, D., N. G. Nossal, and C. C. Richardson. 1997a. Role of the bacteriophage T7 and T4 single-stranded DNA-binding proteins in the formation of joint molecules and DNA-catalyzed polar branch migration. J. Biol. Chem. 272: 8380–8387.

    Article  PubMed  CAS  Google Scholar 

  42. Kong, D., J. D. Griffith, and C. C. Richardson. 1997b. Gene 4 helicase of bacteriophage T7 mediates strand transfer through pyrimidine dimers mismatches, and nonhomologous regions. Proc. Natl. Acad. Sci. USA 94: 2987–2992.

    Article  PubMed  CAS  Google Scholar 

  43. Kreuzer, K. N., and J. W. Drake. 1994. Repair of lethal DNA damage, in Molecular Biology of Bacteriophage T4, ( Karam, J. D., et al., eds.), ASM Press, Washington, DC, pp. 89–97.

    Google Scholar 

  44. Krokan, H. E., R. Standal, and G. Slupphaug. 1997. DNA glycosylases in the base excision repair of DNA. Biochem. J. 325: 1–16.

    PubMed  CAS  Google Scholar 

  45. Kusewitt, D. F., C. L. Budge, R. D. Ley. 1994. Enhanced pyrimidine dimer repair in cultured murine epithelial cells transfected with the denV gene of bacteriophage T4. J. Invest. Dermatol. 102: 485–489.

    Article  PubMed  CAS  Google Scholar 

  46. Kusewitt, D. F., R. D. Ley, and E. E. Henderson. 1991. Enhanced pyrimidine dimer removal in repair-proficient murine fibroblasts transformed with the denV gene of bacteriophage T4. Mutat. Res. 255: 1–9.

    Article  PubMed  CAS  Google Scholar 

  47. Lapointe, G., T. Mori, and D. H. Evans. 1996. Tobacco plants expressing T4 endonuclease V show enhanced sensitivity to ultraviolet light and DNA alkylating agents. Mutat. Res. 351: 19–31.

    Article  PubMed  Google Scholar 

  48. Masker, W. 1992. In vitro repair of double-strand breaks accompanied by recombination in bacteriophage T7 DNA. J. Bacteriol. 174: 155–160.

    CAS  Google Scholar 

  49. Mickelson, C., and Wiberg, J. S. 1981. Membrane-associated DNase activity controlled by genes 46 and 47 of bacteriophage T4D and elevated DNase activity associated with the T4 das mutation. J. Vi rol. 40: 65–77.

    CAS  Google Scholar 

  50. Miskimins, R., S. Schneider, V. Johns and H. Bernstein. 1982. Topoisomerase involvement in multiplicity reactivation of phage T4. Genetics 101: 157–177.

    PubMed  CAS  Google Scholar 

  51. Morikawa, K., M. Ariyoshi, D. G. Vassylyev, O. Matsumoto, K. Katayanagi, and E. Ohtsuka. 1995. Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 A and X-ray analysis of the three active site mutants. J. Mol. Biol. 249: 360–375.

    Article  PubMed  CAS  Google Scholar 

  52. Morrical, S. W., K. Hempstead, and M. D. Morrical. 1994. The gene 59 protein of bacteriophage T4 modulates the intrinsic and ssDNA-stimulated ATPase activities of gene 41 protein, the T4 replicative helicase. J. Biol. Chem. 269: 33069–33081.

    PubMed  CAS  Google Scholar 

  53. Mosig, G. 1985. Bacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages. Genetics 110: 159–171.

    PubMed  CAS  Google Scholar 

  54. Neece, S. H., K. Carles-Kinch, D. J. Tomso, and K. N. Kreuzer. 1996. Role of recombinational repair in sensitivity to an antitumour agent that inhibits bacteriophage T4 type II topoisomerase. Mol. Microbiol. 20: 1145–1154.

    Article  PubMed  CAS  Google Scholar 

  55. Palit, B. N., G. Das, and J. Das. 1983. Repair of ultraviolet light-induced DNA damage in cholera bacteriophage. J. Gen. Virol. 64: 1749–1755.

    Article  PubMed  CAS  Google Scholar 

  56. Purmal, A. A., L. E. Rabow, G. W. Lampman, R. P. Cunningham, and Y. W. Kow. 1996. A common mechanism of action for the N-glycosylase activity of DNA N-glycosylase/AP lyases from E. coli and T4. Mutat. Res. 364: 193–207.

    Article  PubMed  CAS  Google Scholar 

  57. Reha-Krantz, L. J., R. L. Nonay, R. S. Day, and S. H. Wilson. 1996. Replication of 06-methylguanine-containing DNA by repair and replicative DNA polymerases. J. Biol. Chem. 271: 20088–20095.

    Article  PubMed  CAS  Google Scholar 

  58. Salinas, F., and T. Kodadek. 1994. Strand exchange through a DNA-protein complex requires a DNA helicase. Biochem. Biophys. Res. Commun. 205: 1004–1009.

    Article  PubMed  CAS  Google Scholar 

  59. Salinas, F., and T. Kodadek. 1995. Phage T4 homologous strand exchange: a DNA helicase, not the strand transferase, drives polar branch migration. Cell 82: 111–119.

    Article  PubMed  CAS  Google Scholar 

  60. Salinas, F., H. Jiang, and T. Kodadek. 1995. Homology dependence of UvsX protein-catalyzed joint molecule formation. J. Biol. Chem. 270: 5181–5186.

    Article  PubMed  CAS  Google Scholar 

  61. Samad, S. A., S. C. Bhattacharyya, and S. N. Chatterjee. 1987. Ultraviolet inactivation and photoreactivation of the cholera phage ‘kappa.’ Radiat. Environ. Biophys. 26: 295–300.

    Article  PubMed  CAS  Google Scholar 

  62. Shcherbakov, V. P., L. A. Plugina, and E. A. Kudryashova. 1995. Marker-dependent recombination in T4 bacteriophage. IV. Recombinational effects of antimutator T4 DNA polymerase. Genetics 140: 13–25.

    PubMed  CAS  Google Scholar 

  63. Solaro, P. C., K. Birkenkamp, R Pfeiffer, B. Kemper. 1993. Endonuclease VII of phage T4 triggers mismatch correction in vitro. J. Mol. Biol. 230: 868–877.

    Article  PubMed  CAS  Google Scholar 

  64. Story, R. M., D. K. Bishop, N. Kleckner, T. A. Steitz. 1993. Structural relationship of bacterial RecA protein to recombination proteins from bacteriophage T4 and yeast. Science 259: 1892–1896.

    Article  PubMed  CAS  Google Scholar 

  65. Toulme, J. J., T. Behmoaras, M. Guigues, and C. Helene. 1983. Recognition of chemically damaged DNA by the gene 32 protein from bacteriophage T4. EMBO J. 2: 505–510.

    PubMed  CAS  Google Scholar 

  66. Toulme, J. J., and T. S. Saison-Behmoaras. 1985. Recognition of damaged regions in DNA by oligopeptides and proteins. Biochimie 67: 301–307.

    Article  PubMed  CAS  Google Scholar 

  67. Valerie, K. 1995. Replacing tryptophan-128 of T4 endonuclease V with a serine residue results in decreased enzymatic activity in vitro and in vivo. Nucleic Acids Res. 23: 3764–3770.

    Article  PubMed  CAS  Google Scholar 

  68. Valerie, K., A. P. Green, J. K. de Riel, and E. E. Henderson. 1987. Transient and stable complementation of ultraviolet repair in xeroderma pigmentosum cells by the denV gene of bacteriophage T4. Cancer Res. 47: 2967–2971.

    PubMed  CAS  Google Scholar 

  69. Valerie, K., E. E. Henderson, and J. K. de Riel. 1985. Expression of a cloned denV gene of bacteriophage T4 in Escherichia coli. Proc. Natl. Acad. Sci. USA 82: 4763–4767.

    Article  PubMed  CAS  Google Scholar 

  70. Vassylyev, D. G., T. Kashiwagi, Y. Mikami, M. Ariyoshi, S. Iwai, E. Ohtsuka, and K. Morikawa. 1995. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell 83: 773–782.

    Article  PubMed  CAS  Google Scholar 

  71. White, M. F., M. J. Giraud-Panis, J. R. Pohler, and D. M. Lilley. 1997. Recognition and manipulation of branched DNA structure by junction-resolving enzymes. J. Mol. Biol. 269: 647–664.

    Article  PubMed  CAS  Google Scholar 

  72. Woodworth, D. L. and Kreuzer, K. N. 1996. Bacteriophage T4 mutants hypersensitive to an antitumor agent that induces topoisomerase-DNA cleavage complexes. Genetics 143: 1081–1090.

    PubMed  CAS  Google Scholar 

  73. Wu, J., and L. E. Liu. 1997. Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res. 25: 4181–4186.

    Article  PubMed  CAS  Google Scholar 

  74. Yarosh, D. B. 1978. UV-induced mutation in bacteriophage T4. J. Virol. 26: 265–271.

    PubMed  CAS  Google Scholar 

  75. Yarosh, D., J. Klein, J. Kibitel, L. Alas, A. O’Connor, B. Cummings, et al. 1996. Enzyme therapy of xeroderma pigmentosum: safety and efficacy testing of T4N5 liposome lotion containing a prokaryotic DNA repair enzyme. Photodermatol. Photoimmunol. Photomed. 12: 122–130.

    Article  PubMed  CAS  Google Scholar 

  76. Yonesaki, T. 1994. Involvement of a replicative DNA helicase of bacteriophage T4 in DNA recombination. Genetics 138: 247–252.

    PubMed  CAS  Google Scholar 

  77. Yonesaki, T., and T. Minagawa. 1985. T4 phage gene uvsX product catalyzes homologous DNA pairing. EMBO J. 4: 3321–3327.

    PubMed  CAS  Google Scholar 

  78. Yonesaki, T., and T. Minagawa. 1989. Synergistic action of three recombination gene products of bacteriophage T4, uvsX, uvsY, and gene 32 proteins. J. Biol. Chem. 264: 7814–7820.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bernstein, C., Bernstein, H. (2001). DNA Repair in Bacteriophage. In: Nickoloff, J.A., Hoekstra, M.F. (eds) DNA Damage and Repair. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-095-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-095-7_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9635-2

  • Online ISBN: 978-1-59259-095-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics