Skip to main content

Rapid Generation of Chicken Immune Libraries for Yeast Surface Display

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2070))

Abstract

Fluorescence-activated cell sorting (FACS) in combination with yeast surface display has emerged as a vital tool for the isolation and engineering of antibodies and antibody-derived fragments from synthetic, naïve, and immune libraries. However, the generation of antibodies against certain human antigens from immunized animals, e.g., mice, can remain challenging due to the homology to the murine counterpart. Due to the phylogenetic distance from humans, avian immunization can be a powerful technique for the generation of antibodies with high specificity against human antigens. Additionally, the peculiar Ig gene diversification in chickens enables the amplification of heavy and light chain genes utilizing single primer pairs, resulting in a convenient library generation. Herein, we describe the protocol for the construction of a single chain fragment variable (scFv) library derived from chickens after immunization with epidermal growth factor receptor (EGFR) for subsequent yeast surface display as well as the screening process utilizing FACS for the isolation of high-affinity antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tizard I (2002) The avian antibody response. Semin Avian Exotic Pet Med 11(1):2–14. https://doi.org/10.1053/saep.2002.28216

    Article  Google Scholar 

  2. Sun S, Mo W, Ji Y, Liu S (2001) Preparation and mass spectrometric study of egg yolk antibody (IgY) against rabies virus. Rapid Commun Mass Spectr 15(9):708–712. https://doi.org/10.1002/rcm.271

    Article  CAS  Google Scholar 

  3. Cova L (2005) DNA-designed avian IgY antibodies: novel tools for research, diagnostics and therapy. J Clin Virol 34(Suppl 1):S70–S74

    Article  CAS  PubMed  Google Scholar 

  4. Market E, Papavasiliou FN (2003) V(D)J recombination and the evolution of the adaptive immune system. PLoS Biol 1(1):E16. https://doi.org/10.1371/journal.pbio.0000016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McCormack WT, Tjoelker LW, Thompson CB (1993) Immunoglobulin gene diversification by gene conversion. In: Cohn WE, Moldave K (eds) Progress in nucleic acid research and molecular biology, vol 45. Academic, New York, NY, pp 27–45. https://doi.org/10.1016/S0079-6603(08)60865-X

    Chapter  Google Scholar 

  6. Reynaud CA, Anquez V, Grimal H, Weill JC (1987) A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48(3):379–388

    Article  CAS  PubMed  Google Scholar 

  7. Reynaud C-A, Dahan A, Anquez V, Weill J-C (1989) Somatic hyperconversion diversifies the single VH gene of the chicken with a high incidence in the D region. Cell 59(1):171–183. https://doi.org/10.1016/0092-8674(89)90879-9

    Article  CAS  PubMed  Google Scholar 

  8. Reynaud CA, Anquez V, Weill JC (1991) The chicken D locus and its contribution to the immunoglobulin heavy chain repertoire. Eur J Immunol 21(11):2661–2670. https://doi.org/10.1002/eji.1830211104

    Article  CAS  PubMed  Google Scholar 

  9. Thompson CB, Neiman PE (1987) Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell 48(3):369–378. https://doi.org/10.1016/0092-8674(87)90188-7

    Article  CAS  PubMed  Google Scholar 

  10. Wu L, Oficjalska K, Lambert M, Fennell BJ, Darmanin-Sheehan A, Ni Shuilleabhain D, Autin B, Cummins E, Tchistiakova L, Bloom L, Paulsen J, Gill D, Cunningham O, Finlay WJ (2012) Fundamental characteristics of the immunoglobulin VH repertoire of chickens in comparison with those of humans, mice, and camelids. J Immunol 188(1):322–333. https://doi.org/10.4049/jimmunol.1102466

    Article  CAS  PubMed  Google Scholar 

  11. Tsurushita N, Park M, Pakabunto K, Ong K, Avdalovic A, Fu H, Jia A, Vasquez M, Kumar S (2004) Humanization of a chicken anti-IL-12 monoclonal antibody. J Immunol Methods 295(1–2):9–19. https://doi.org/10.1016/j.jim.2004.08.018

    Article  CAS  PubMed  Google Scholar 

  12. Nishibori N, Horiuchi H, Furusawa S, Matsuda H (2006) Humanization of chicken monoclonal antibody using phage-display system. Mol Immunol 43(6):634–642. https://doi.org/10.1016/j.molimm.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  13. Davies EL, Smith JS, Birkett CR, Manser JM, Anderson-Dear DV, Young JR (1995) Selection of specific phage-display antibodies using libraries derived from chicken immunoglobulin genes. J Immunol Methods 186(1):125–135

    Article  CAS  PubMed  Google Scholar 

  14. Carlander D, Stålberg J, Larsson A (1999) Chicken antibodies. Ups J Med Sci 104(3):179–189. https://doi.org/10.3109/03009739909178961

    Article  CAS  PubMed  Google Scholar 

  15. Yamanaka HI, Inoue T, Ikeda-Tanaka O (1996) Chicken monoclonal antibody isolated by a phage display system. J Immunol 157(3):1156–1162

    CAS  PubMed  Google Scholar 

  16. Li J, Xu Y, Wang X, Li Y, Wang L, Li X (2016) Construction and characterization of a highly reactive chicken-derived single-chain variable fragment (scFv) antibody against Staphylococcus aureus developed with the T7 phage display system. Int Immunopharmacol 35:149–154. https://doi.org/10.1016/j.intimp.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  17. Hu ZQ, Li HP, Zhang JB, Huang T, Liu JL, Xue S, Wu AB, Liao YC (2013) A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains. Anal Chim Acta 764:84–92. https://doi.org/10.1016/j.aca.2012.12.022

    Article  CAS  PubMed  Google Scholar 

  18. Grzeschik J, Yanakieva D, Roth L, Krah S, Hinz SC, Elter A, Zollmann T, Schwall G, Zielonka S, Kolmar (2019) Yeast Surface Display in Combination with Fluorescence‐activated Cell Sorting Enables the Rapid Isolation of Antibody Fragments Derived from Immunized Chickens. Biotechnol J 14(4):1800466. https://doi.org/10.1002/biot.201800466

    Article  Google Scholar 

  19. Doerner A, Rhiel L, Zielonka S, Kolmar H (2014) Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett 588(2):278–287. https://doi.org/10.1016/j.febslet.2013.11.025

    Article  CAS  PubMed  Google Scholar 

  20. Welihinda AA, Kaufman RJ (1996) The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J Biol Chem 271(30):18181–18187

    Article  CAS  PubMed  Google Scholar 

  21. Lu Z-J, Deng S-J, Huang D-G, He Y, Lei M, Zhou L, Jin P (2012) Frontier of therapeutic antibody discovery: the challenges and how to face them. World J Biol Chem 3(12):187

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557. https://doi.org/10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  23. Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Design Select 23(4):155–159. https://doi.org/10.1093/protein/gzq002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Kolmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bogen, J.P., Grzeschik, J., Krah, S., Zielonka, S., Kolmar, H. (2020). Rapid Generation of Chicken Immune Libraries for Yeast Surface Display. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2070. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9853-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9853-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9852-4

  • Online ISBN: 978-1-4939-9853-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics