Skip to main content

Network-Based Drug Repositioning: Approaches, Resources, and Research Directions

  • Protocol
  • First Online:
Computational Methods for Drug Repurposing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1903))

Abstract

The wealth of knowledge and omic data available in drug research allowed the rising of several computational methods in drug discovery field yielding a novel and exciting application called drug repositioning. Several computational methods try to make a high-level integration of all the knowledge in order to discover unknown mechanisms. In this chapter we present an in-depth review of data resources and computational models for drug repositioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Emmert-Streib F, Tripathi S, de Matos Simoes R et al (2013) The human disease network. Sys Biomed 1:20–28

    Article  Google Scholar 

  2. Weng L, Zhang L, Peng Y, Huang RS (2013) Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy. Pharmacogenomics 14:315–324

    Article  CAS  PubMed  Google Scholar 

  3. Hodos RA, Kidd BA, Shameer K et al (2016) In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med 8:186–210

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dovrolis N, Kolios G, Spyrou G, Maroulakou I (2017) Laying in silico pipelines for drug repositioning: a paradigm in ensemble analysis for neurodegenerative diseases. Drug Discov Today 22:805–813

    Article  PubMed  Google Scholar 

  5. Lotfi Shahreza M, Ghadiri N, Mousavi SR et al (2017) A review of network-based approaches to drug repositioning. Brief Bioinform. https://doi.org/10.1093/bib/bbx017

    Article  Google Scholar 

  6. Alaimo S, Giugno R, Pulvirenti A (2016) Recommendation techniques for drug-target interaction prediction and drug repositioning. Methods Mol Biol 1415:441–462

    Article  CAS  PubMed  Google Scholar 

  7. Paolini GV, Shapland RHB, van Hoorn WP et al (2006) Global mapping of pharmacological space. Nat Biotechnol 24:805–815

    Article  CAS  PubMed  Google Scholar 

  8. Koch U, Hamacher M, Nussbaumer P (2014) Cheminformatics at the interface of medicinal chemistry and proteomics. Biochim Biophys Acta 1844:156–161

    Article  CAS  PubMed  Google Scholar 

  9. Piro RM (2012) Network medicine: linking disorders. Hum Genet 131:1811–1820

    Article  PubMed  Google Scholar 

  10. Bradley D (2005) Why big pharma needs to learn the three “R”s. Nat Rev Drug Discov 4:446–446

    Article  CAS  PubMed  Google Scholar 

  11. Ghofrani HA, Osterloh IH, Grimminger F (2006) Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 5:689–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 28:31–36

    Article  CAS  Google Scholar 

  13. Heller SR, McNaught A, Pletnev I et al (2015) InChI, the IUPAC international chemical identifier. J Chem 7:23

    Article  Google Scholar 

  14. Xue L, Godden JW, Stahura FL, Bajorath J (2003) Design and evaluation of a molecular fingerprint involving the transformation of property descriptor values into a binary classification scheme. J Chem Inf Comput Sci 43:1151–1157

    Article  CAS  PubMed  Google Scholar 

  15. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280

    Article  CAS  PubMed  Google Scholar 

  16. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Ann Rep Comput Chem 4:217–241

    Article  CAS  Google Scholar 

  17. Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–D954

    Article  CAS  PubMed  Google Scholar 

  18. Wishart DS, Feunang YD, Guo AC et al (2017) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    Article  PubMed Central  Google Scholar 

  19. Wishart DS, Knox C, Guo AC et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–D672

    Article  CAS  PubMed  Google Scholar 

  20. Keiser MJ, Roth BL, Armbruster BN et al (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206

    Article  CAS  PubMed  Google Scholar 

  21. Yung-Chi C, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  Google Scholar 

  22. Alaimo S, Bonnici V, Cancemi D et al (2015) DT-Web: a web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference. BMC Syst Biol 9(Suppl 3):S4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kuhn M, von Mering C, Campillos M et al (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36:D684–D688

    Article  CAS  PubMed  Google Scholar 

  24. Liu T, Lin Y, Wen X et al (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198–D201

    Article  CAS  PubMed  Google Scholar 

  25. Lamb J (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  PubMed  Google Scholar 

  26. Duan Q, Flynn C, Niepel M et al (2014) LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res 42:W449–W460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Edgar R (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kolesnikov N, Hastings E, Keays M et al (2015) ArrayExpress update--simplifying data submissions. Nucleic Acids Res 43:D1113–D1116

    Article  CAS  PubMed  Google Scholar 

  29. Zheng W, Thorne N, McKew JC (2013) Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today 18:1067–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Degtyarenko K, de Matos P, Ennis M et al (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36:D344–D350

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen D-T, Mathias S, Bologa C et al (2017) Pharos: collating protein information to shed light on the druggable genome. Nucleic Acids Res 45:D995–D1002

    Article  CAS  PubMed  Google Scholar 

  32. Whirl-Carrillo M, McDonagh EM, Hebert JM et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417

    Article  CAS  PubMed  Google Scholar 

  33. Kuhn M, Campillos M, Letunic I et al (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6:343

    Article  PubMed  PubMed Central  Google Scholar 

  34. Denis A, Mergaert L, Fostier C et al (2010) A comparative study of European rare disease and orphan drug markets. Health Policy 97:173–179

    Article  PubMed  Google Scholar 

  35. Chavali AK, Blazier AS, Tlaxca JL et al (2012) Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease. BMC Syst Biol 6:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang L, Agarwal P (2011) Systematic drug repositioning based on clinical side-effects. PLoS One 6:e28025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sirota M, Dudley JT, Kim J et al (2011) Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 3:96ra77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dudley JT, Sirota M, Shenoy M et al (2011) Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 3:96ra76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chiang AP, Butte AJ (2009) Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin Pharmacol Ther 86:507–510

    Article  CAS  PubMed  Google Scholar 

  40. Zhang P, Wang F, Hu J (2014) Towards drug repositioning: a unified computational framework for integrating multiple aspects of drug similarity and disease similarity. AMIA Annu Symp Proc 2014:1258–1267

    PubMed  PubMed Central  Google Scholar 

  41. Emig D, Ivliev A, Pustovalova O et al (2013) Drug target prediction and repositioning using an integrated network-based approach. PLoS One 8:e60618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yeh S-H, Yeh H-Y, Soo V-W (2012) A network flow approach to predict drug targets from microarray data, disease genes and interactome network - case study on prostate cancer. J Clin Bioinform 2:1

    Article  Google Scholar 

  43. Chen H-R, Sherr DH, Hu Z, DeLisi C (2016) A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer. BMC Med Genomics 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li Z, Wang R-S, Zhang X-S (2011) Two-stage flux balance analysis of metabolic networks for drug target identification. BMC Syst Biol 5(Suppl 1):S11

    Article  PubMed  PubMed Central  Google Scholar 

  45. Folger O, Jerby L, Frezza C et al (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yamanishi Y, Araki M, Gutteridge A et al (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24:i232–i240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fakhraei S, Huang B, Raschid L, Getoor L (2014) Network-based drug-target interaction prediction with probabilistic soft logic. IEEE/ACM Trans Comput Biol Bioinform 11:775–787

    Article  PubMed  Google Scholar 

  48. Fakhraei S, Raschid L, Getoor L (2013) Drug-target interaction prediction for drug repurposing with probabilistic similarity logic. In: Proceedings of the 12th International Workshop on Data Mining in Bioinformatics - BioKDD ’13. ACM, New York, NY

    Google Scholar 

  49. Chen H, Zhang Z (2013) A semi-supervised method for drug-target interaction prediction with consistency in networks. PLoS One 8:e62975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27:3036–3043

    Article  PubMed  Google Scholar 

  51. van Laarhoven T, Marchiori E (2013) Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One 8:e66952

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xia Z, Wu L-Y, Zhou X, Wong STC (2010) Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst Biol 4(Suppl 2):S6

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bleakley K, Yamanishi Y (2009) Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25:2397–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mei J-P, Kwoh C-K, Yang P et al (2013) Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29:238–245

    Article  CAS  PubMed  Google Scholar 

  55. Gönen M (2012) Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28:2304–2310

    Article  PubMed  Google Scholar 

  56. Perlman L, Gottlieb A, Atias N et al (2011) Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol 18:133–145

    Article  CAS  PubMed  Google Scholar 

  57. Iorio F, Bosotti R, Scacheri E et al (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci U S A 107:14621–14626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gottlieb A, Stein GY, Ruppin E, Sharan R (2011) PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol 7:496

    Article  PubMed  PubMed Central  Google Scholar 

  59. Frijters R, van Vugt M, Smeets R et al (2010) Literature mining for the discovery of hidden connections between drugs, genes and diseases. PLoS Comput Biol 6:e1000943

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang H-T, Ju J-H, Wong Y-T et al (2017) Literature-based discovery of new candidates for drug repurposing. Brief Bioinform 18:488–497

    PubMed  Google Scholar 

  61. Wang W, Yang S, Zhang X, Li J (2014) Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30:2923–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang P, Agarwal P, Obradovic Z (2013) Computational drug repositioning by ranking and integrating multiple data sources. In: Blockeel H, Kersting K, Nijssen S, Železný F (eds) Machine learning and knowledge discovery in databases. Springer, Berlin, pp 579–594

    Google Scholar 

  63. Wang Y, Chen S, Deng N, Wang Y (2013) Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS One 8:e78518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen X, Liu M-X, Yan G-Y (2012) Drug-target interaction prediction by random walk on the heterogeneous network. Mol Biosyst 8:1970–1978

    Article  CAS  PubMed  Google Scholar 

  65. Berenstein AJ, Magariños MP, Chernomoretz A, Agüero F (2016) A multilayer network approach for guiding drug repositioning in neglected diseases. PLoS Negl Trop Dis 10:e0004300

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cheng F, Liu C, Jiang J et al (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8:e1002503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alaimo S, Pulvirenti A, Giugno R, Ferro A (2013) Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics 29:2004–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alaimo S, Giugno R, Pulvirenti A (2014) ncPred: ncRNA-disease association prediction through tripartite network-based inference. Front Bioeng Biotechnol 2:71

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang J, Li C, Lin Y et al (2017) Computational drug repositioning using collaborative filtering via multi-source fusion. Expt Syst Appl 84:281–289

    Article  Google Scholar 

Download references

Acknowledgments

This work has been done within the research project “Marcatori molecolari e clinico-strumentali precoci, nelle patologie metaboliche e cronico-degenerative” founded by the Department of Clinical and Experimental Medicine of University of Catania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Pulvirenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alaimo, S., Pulvirenti, A. (2019). Network-Based Drug Repositioning: Approaches, Resources, and Research Directions. In: Vanhaelen, Q. (eds) Computational Methods for Drug Repurposing. Methods in Molecular Biology, vol 1903. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8955-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8955-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8954-6

  • Online ISBN: 978-1-4939-8955-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics