Skip to main content

Assays to Measure the Activity of Influenza Virus Polymerase

  • Protocol
  • First Online:
Influenza Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1836))

Abstract

Influenza viruses use an RNA-dependent RNA polymerase (RdRp) to transcribe and replicate their segmented negative-stranded RNA genomes. The influenza A virus RdRp consists of a heterotrimeric complex of the proteins PB1, PB2, and PA. The RdRp is associated with the incoming influenza A viral RNA (vRNA) genome bound by the viral nucleoprotein (NP), in complexes called viral ribonucleoproteins, vRNPs. During the viral replication cycle, the RdRp snatches capped primers from nascent host mRNAs to carry out primary viral transcription. Viral mRNA translation produces new copies of the RdRp subunits and NP, which are required to stabilize and encapsidate complementary copies of the genome (cRNAs), forming cRNPs. These cRNPs then use the cRNAs to make new vRNAs, which are encapsidated into new vRNPs. Secondary transcription by new vRNPs results in further viral mRNAs and an increase of the viral protein load in the cell. The activities of the RdRp (mRNA, cRNA, and vRNA synthesis) in the influenza virus replication cycle can be measured on several levels, ranging from assessment of the accumulation of RNA products in virus-infected cells, through in situ reconstitution of the RdRp from cloned cDNAs, to in vitro biochemical assays that allow the dissection of individual functions of the RdRp enzyme. Here we describe these assays and point out the advantages and drawbacks of each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. te Velthuis AJ, Fodor E (2016) Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol 18:473–493

    Google Scholar 

  2. Krug RM, Fodor E (2013) The virus genome and its replication. In: Textbook of influenza, 2nd edn. John Wiley and Sons, Oxford, pp 57–66

    Chapter  Google Scholar 

  3. Hengrung N, El Omari K, Serna Martin I, Vreede FT, Cusack S et al (2015) Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature 527:114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pflug A, Guilligay D, Reich S, Cusack S (2014) Structure of influenza a polymerase bound to the viral RNA promoter. Nature 516:355–360

    Article  CAS  PubMed  Google Scholar 

  5. Reich S, Guilligay D, Pflug A, Malet H, Berger I et al (2014) Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516:361–366

    Article  CAS  PubMed  Google Scholar 

  6. Arranz R, Coloma R, Chichón FJ, Conesa JJ, Carrascosa JL et al (2012) The structure of native influenza virion ribonucleoproteins. Science 338:1634–1637

    Article  CAS  PubMed  Google Scholar 

  7. Moeller A, Kirchdoerfer RN, Potter CS, Carragher B, Wilson IA (2012) Organization of the influenza virus replication machinery. Science 338:1631–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eisfeld AJ, Neumann G, Kawaoka Y (2015) At the Centre: influenza a virus ribonucleoproteins. Nat Rev Microbiol 13:28–41

    Article  CAS  PubMed  Google Scholar 

  9. Gabriel G, Fodor E (2014) Molecular determinants of pathogenicity in the polymerase complex. Curr Top Microbiol Immunol 385:35–60

    PubMed  Google Scholar 

  10. York A, Hutchinson EC, Fodor E (2014) Interactome analysis of the influenza a virus transcription/replication machinery identifies protein phosphatase 6 as a cellular factor required for efficient virus replication. J Virol 88:13284–13299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robb NC, Smith M, Vreede FT, Fodor E (2009) NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J Gen Virol 90:1398–1407

    Article  CAS  PubMed  Google Scholar 

  12. Kawakami E, Watanabe T, Fujii K, Goto H, Watanabe S et al (2011) Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J Virol Methods 173:1–6

    Article  CAS  PubMed  Google Scholar 

  13. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, García-Sastre A (1999) Rescue of influenza a virus from recombinant DNA. J Virol 73:9679–9682

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Neumann G, Zobel A, Hobom G (1994) RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 202:477–479

    Article  CAS  PubMed  Google Scholar 

  15. Fodor E, Crow M, Mingay LJ, Deng T, Sharps J et al (2002) A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76:8989–9001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li OT, Chan MC, Leung CS, Chan RW, Guan Y et al (2009) Full factorial analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient polymerase for virus adaptation. PLoS One 4:e5658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brownlee GG, Fodor E, Pritlove DC, Gould KG, Dalluge JJ (1995) Solid phase synthesis of 5′-diphosphorylated oligoribonucleotides and their conversion to capped m7Gppp-oligoribonucleotides for use as primers for influenza A virus RNA polymerase in vitro. Nucleic Acids Res 23:2641–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chung TD, Cianci C, Hagen M, Terry B, Matthews JT et al (1994) Biochemical studies on capped RNA primers identify a class of oligonucleotide inhibitors of the influenza virus RNA polymerase. Proc Natl Acad Sci U S A 91:2372–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deng T, Vreede FT, Brownlee GG (2006) Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J Virol 80:2337–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Plotch SJ, Krug RM (1977) Influenza virion transcriptase: synthesis in vitro of large, polyadenylic acid-containing complementary RNA. J Virol 21:24–34

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Mänz B, Brunotte L, Reuther P, Schwemmle M (2012) Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells. Nat Commun 3:802

    Article  CAS  PubMed  Google Scholar 

  22. Deng T, Sharps J, Fodor E, Brownlee GG (2005) In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza a virus polymerase subunits into a functional trimeric complex. J Virol 79:8669–8674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH et al (2003) Real-time PCR based on SYBR-green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 3:18

    Article  PubMed  PubMed Central  Google Scholar 

  24. te Velthuis A, Robb NC, Kapanidis AF, Fodor F (2016) The role of the priming loop in influenza A virus RNA synthesis. Nat Microbiol 1:16029

    Article  CAS  Google Scholar 

  25. Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–858

    Article  CAS  PubMed  Google Scholar 

  26. Koppstein D, Ashour J, Bartel DP (2015) Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Res 43:5052–5064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reich S, Guilligay D, Cusack S (2017) An in vitro fluorescence based study of initiation of RNA synthesis by influenza B polymerase. Nucleic Acids Res 45:3353–3368

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Bouloy M, Plotch SJ, Krug RM (1978) Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc Natl Acad Sci U S A 75:4886–4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robertson HD, Dickson E, Plotch SJ, Krug RM (1980) Identification of the RNA region transferred from a representative primer, beta-globin mRNA, to influenza mRNA during in vitro transcription. Nucleic Acids Res 8:925–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. te Velthuis AJ, Turrell L, Vreede FT, Fodor E (2013) Uncoupling of influenza A virus transcription and replication through mutation of the unpaired adenosine in the viral RNA promoter. J Virol 87:10381–10384

    Article  CAS  Google Scholar 

  31. Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM et al (2012) An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337:199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

AJWtV is supported by Wellcome Trust grants 098721/Z/12/Z and 206579/Z/17/Z. JSL is supported by BBSRC sLoLa grant BB/K002465/1. WSB is supported by Wellcome Trust grants 200187/Z/15/Z and 205100/Z/16/Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy S. Barclay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

te Velthuis, A.J.W., Long, J.S., Barclay, W.S. (2018). Assays to Measure the Activity of Influenza Virus Polymerase. In: Yamauchi, Y. (eds) Influenza Virus. Methods in Molecular Biology, vol 1836. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8678-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8678-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8677-4

  • Online ISBN: 978-1-4939-8678-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics