Skip to main content

Using Flow Cytometry Analysis in Plant Tissue Culture Derived Plants

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Abstract

Somaclonal variation (SC) in plants regenerated from tissue culture, via organogenesis or somatic embryogenesis, is frequently associated with abnormalities in the content of deoxyribonucleic acid (DNA), viz., aneuploidy and polyploidy. Flow cytometry (FCM) using the nucleic acid-specific fluorochrome propidium iodide has proven to be a rapid, simple, and reproducible technique for assessment of DNA content and ploidy variation occurring in plant tissue cultures. Here an outline of the sample preparation of suspension with intact nuclei by the two-step standard method, and FCM analysis of DNA ploidy stability in plants regenerated from embryogenic cell suspension (ECS) of banana Musa acuminata, AAA, cv. Grand Naine (Cavendish subgroup) using an internal standard is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Robinson JP, Grégori G (2007) Principles of flow cytometry. In: Flow cytometry with plant cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 19–40. https://doi.org/10.1002/9783527610921.ch2

    Chapter  Google Scholar 

  2. Suda J, Kron P, Husband BC, Trávníček P (2007) Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Flow cytometry with plant cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 103–130. https://doi.org/10.1002/9783527610921.ch5

    Chapter  Google Scholar 

  3. Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/9783527610921.ch3

    Chapter  Google Scholar 

  4. Pellicer J, Leitch IJ (2014) The application of flow cytometry for estimating genome size and ploidy level in plants. In: Besse P (ed) Molecular plant taxonomy: methods and protocols. Humana Press, Totowa, NJ, pp 279–307. https://doi.org/10.1007/978-1-62703-767-9_14

    Chapter  Google Scholar 

  5. Galbraith DW, Harkins KR, Maddox JM et al (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051. https://doi.org/10.1126/science.220.4601.1049

    Article  PubMed  CAS  Google Scholar 

  6. Doležel J, Binarová P, Lcretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120. https://doi.org/10.1007/bf02907241

    Article  Google Scholar 

  7. Roberts AV (2007) The use of bead beating to prepare suspensions of nuclei for flow cytometry from fresh leaves, herbarium leaves, petals and pollen. Cytometry A 71A:1039–1044. https://doi.org/10.1002/cyto.a.20486

    Article  Google Scholar 

  8. Galbraith DW, Lambert GM, Macas J, Doležel J (2001) Analysis of nuclear DNA content and ploidy in higher plants. Curr Protoc Cyt 2(7.6):7.6.1–7.6.22. https://doi.org/10.1002/0471142956.cy0706s02

    Article  Google Scholar 

  9. Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106. https://doi.org/10.1002/cyto.990190203

    Article  PubMed  Google Scholar 

  10. Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98:679–689. https://doi.org/10.1093/aob/mcl141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sgorbati S, Levi M, Sparvoli E et al (1986) Cytometry and flow cytometry of 4′,6-diamidino-2-phenylindole (DAPI)-stained suspensions of nuclei released from fresh and fixed tissues of plants. Physiol Plant 68:471–476. https://doi.org/10.1111/j.1399-3054.1986.tb03384.x

    Article  CAS  Google Scholar 

  12. Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631. https://doi.org/10.1111/j.1399-3054.1992.tb04764.x

    Article  Google Scholar 

  13. Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98:515–527. https://doi.org/10.1093/aob/mcl140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ronildo CW, Roberto CC (2011) Flow cytometric analysis using SYBR green I for genome size estimation in coffee. Acta Histochem 113:221–225. https://doi.org/10.1016/j.acthis.2009.10.005

    Article  CAS  Google Scholar 

  15. Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888. https://doi.org/10.1093/aob/mcm152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by Flow Cytometry. Plant Mol Biol Rep 9:229233. https://doi.org/10.1007/BF02672073

  17. Otto FJ (1992) Preparation and staining of cells for high-resolution DNA analysis. In: Radbruch A (ed) Flow cytometry and cell sorting. Springer, Berlin, pp 65–68. https://doi.org/10.1007/978-3-662-02785-1_8

    Chapter  Google Scholar 

  18. Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51. https://doi.org/10.1016/0248-4900(93)90113-S

    Article  PubMed  CAS  Google Scholar 

  19. Pfosser M, Heberle-Bors E, Amon A, Lelley T (1995) Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat–rye addition lines. Cytometry 21:387–393. https://doi.org/10.1002/cyto.990210412

    Article  PubMed  CAS  Google Scholar 

  20. Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Flow cytometry with plant cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 67–101. https://doi.org/10.1002/9783527610921.ch4

    Chapter  Google Scholar 

  21. Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry A 73A:581–598. https://doi.org/10.1002/cyto.a.20562

    Article  CAS  Google Scholar 

  22. Bennett MDS, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Ser B Biol Sci 334:309–345. https://doi.org/10.1098/rstb.1991.0120

    Article  CAS  Google Scholar 

  23. Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36:351–357. https://doi.org/10.1007/bf02920930

    Article  Google Scholar 

  24. Lysak MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 51:123–132. https://doi.org/10.1080/00087114.1998.10589127

    Article  Google Scholar 

  25. Doležel J, Greilhuber J, Lucretti S et al (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26. https://doi.org/10.1006/anbo.1998.0730

    Article  Google Scholar 

  26. Roux NS, Toloza A, Radecki Z et al (2003) Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Rep 21:483–490. https://doi.org/10.1007/s00299-002-0512-6

    Article  PubMed  CAS  Google Scholar 

  27. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310

    Article  PubMed  CAS  Google Scholar 

  28. D'Amato F, Bayliss MW (1985) Cytogenetics of plant cell and tissue cultures and their regenerates. CRC Crit Rev Plant Sci 3:73–112. https://doi.org/10.1080/07352688509382204

    Article  Google Scholar 

  29. Binarová P, Doležel J (1988) Alfalfa embryogenic cell suspension culture: growth and ploidy level stability. J Plant Physiol 133:561–566. https://doi.org/10.1016/S0176-1617(88)80008-7

    Article  Google Scholar 

  30. Gupta PK (1998) Chromosomal basis of somaclonal variation in plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Springer, Netherlands, pp 149–168. https://doi.org/10.1007/978-94-015-9125-6_9

    Chapter  Google Scholar 

  31. Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. https://doi.org/10.1007/bf02342540

    Article  CAS  PubMed  Google Scholar 

  32. Sahijram L, Soneji JR, Bollamma KT (2003) Analyzing somaclonal variation in micropropagated bananas (Musa spp.). In Vitro Cell Dev Biol-Plant 39:551–556. https://doi.org/10.1079/ivp2003467

    Article  Google Scholar 

  33. Hwang S-C, Ko W-H (2004) Cavendish banana cultivars resistant to fusarium wilt acquired through somaclonal variation in Taiwan. Plant Dis 88:580–588. https://doi.org/10.1094/pdis.2004.88.6.580

    Article  PubMed  Google Scholar 

  34. Tang CY (2005) Somaclonal variation: a tool for the improvement of Cavendish banana cultivars. International Society for Horticultural Science (ISHS), Leuven, pp 61–66. https://doi.org/10.17660/ActaHortic.2005.692.6

    Book  Google Scholar 

  35. Giménez C, de García E, Haddad O (2008) Genetic and resistance stability to black Sigatoka disease during micropropagation of Musa CIEN BTA-03 somaclonal variant. Phyton 77:65–79

    Google Scholar 

  36. Ghag SB, Shekhawat UK, Ganapathi TR (2014) Characterization of Fusarium wilt resistant somaclonal variants of banana cv. Rasthali by cDNA-RAPD. Mol Biol Rep 41:7929–7935. https://doi.org/10.1007/s11033-014-3687-3

    Article  PubMed  CAS  Google Scholar 

  37. D'Amato F (1990) Somatic nuclear mutations in vivo and in vitro in higher plants. Caryologia 43:191–204. https://doi.org/10.1080/00087114.1990.10796998

    Article  Google Scholar 

  38. Evans DA, Sharp WR, Medina-Filho HP (1984) Somaclonal and gametoclonal variation. Am J Bot 71:759–774

    Article  Google Scholar 

  39. Bairu M, Aremu A, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173. https://doi.org/10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  40. Roux NSH, Toloza A, Panis B, Doležel J (2004) Detecting ploidy level instability of banana embryogenic suspension cultures by flow cytometry. In: Jain MS, Swennen R (eds) Banana improvement: cellular, molecular, biology, and induced mutations. Proceedings from a meeting held September 24–28, 2001, in Leuven, Belgium. Sci.Publishers Inc, Enfield, NH, pp 251–261

    Google Scholar 

  41. De-la-Peña C, Nic-Can GI, Galaz-Ávalos RM et al (2015) The role of chromatin modifications in somatic embryogenesis in plants. Front Plant Sci 6:635. https://doi.org/10.3389/fpls.2015.00635

    Article  PubMed  PubMed Central  Google Scholar 

  42. Konieczny R, Sliwinska E, Pilarska M, Tuleja M (2012) Morphohistological and flow cytometric analyses of somatic embryogenesis in Trifolium nigrescens Viv. Plant Cell Tiss Org 109:131–141. https://doi.org/10.1007/s11240-011-0081-x

    Article  Google Scholar 

  43. Lysák MA, Doleželová M, Horry JP et al (1999) Flow cytometric analysis of nuclear DNA content in Musa. Theor Appl Genet 98:1344–1350. https://doi.org/10.1007/s001220051201

    Article  Google Scholar 

  44. Kamaté K, Brown S, Durand P et al (2001) Nuclear DNA content and base composition in 28 taxa of Musa. Genome 44:622–627. https://doi.org/10.1139/g01-058

    Article  PubMed  Google Scholar 

  45. Asif MJ, Mak C, Othman RY (2001) Characterization of indigenous Musa species based on flow cytometric analysis of ploidy and nuclear DNA content. Caryologia 54:161–168. https://doi.org/10.1080/00087114.2001.10589223

    Article  Google Scholar 

  46. Bairu MW, Fennell CW, van Staden J (2006) The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Zelig’). Sci Hortic (Amsterdam) 108:347–351. https://doi.org/10.1016/j.scienta.2006.01.039

    Article  CAS  Google Scholar 

  47. Escobedo-GraciaMedrano RM, Maldonado-Borges JI, Burgos-Tan MJ et al (2014) Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminata Colla (AA) ssp. malaccensis cell suspension cultures. Plant Cell Tiss Org 116:175–185. https://doi.org/10.1007/s11240-013-0394-z

    Article  CAS  Google Scholar 

  48. Schoofs HPB, Strosse H, Mayo MA et al (1999) Bottlenecks in the generation and maintenance of morphogenic banana cell suspensions and plant regeneration via somatic embryogenesis therefrom. Info Musa 8:3

    Google Scholar 

  49. Youssef M, Ku-Cauich R, James A, Escobedo-GM RM (2011) Genetic analysis of somatic embryogenesis derived plants in banana. Assiut J Agric Sci 42:287–300

    Google Scholar 

  50. Youssef MA, James A, Mayo-Mosqueda A et al (2010) Influence of genotype and age of explant source on the capacity for somatic embryogenesis of two Cavendish banana cultivars (Musa acuminata Colla, AAA). Afr J Biotechnol 9:2216

    CAS  Google Scholar 

  51. Pillary MOE, Tenkouano A, Doležel J (2006) Ploidy and genome composition of Musa germplasm at the International Institute of Tropical Agriculture (IITA). Afr J Biotehnol 5:1224

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the government of México through SAGARPA-CONACYT Research Project No. 0048160 (RME) and studentship project (# 0048160) to MJBT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa María Escobedo-Gracia-Medrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Escobedo-Gracia-Medrano, R.M., Burgos-Tan, M.J., Ku-Cauich, J.R., Quiroz-Moreno, A. (2018). Using Flow Cytometry Analysis in Plant Tissue Culture Derived Plants. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics