Skip to main content

High-Resolution, High-Throughput Analysis of Hfq-Binding Sites Using UV Crosslinking and Analysis of cDNA (CRAC)

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1737))

Abstract

Small regulatory nonprotein-coding RNAs (sRNAs) have emerged as ubiquitous and abundant regulators of gene expression in a diverse cross section of bacteria. They play key roles in most aspects of bacterial physiology, including central metabolism, nutrient acquisition, virulence, biofilm formation, and outer membrane composition. RNA sequencing technologies have accelerated the identification of bacterial regulatory RNAs and are now being employed to understand their functions. Many regulatory RNAs require protein partners for activity, or modulate the activity of interacting proteins. Understanding how and where proteins interact with the transcriptome is essential to elucidate the functions of the many sRNAs. Here, we describe the implementation in bacteria of a UV-crosslinking technique termed CRAC that allows stringent, transcriptome-wide recovery of bacterial RNA–protein interaction sites in vivo and at base-pair resolution. We have used CRAC to map protein–RNA interaction sites for the RNA chaperone Hfq and ribonuclease RNase E in pathogenic E. coli, and toxins from toxin–antitoxin systems in Mycobacterium smegmatis, demonstrating the broad applicability of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gama-Castro S, Salgado H, Santos-Zavaleta A et al (2016) RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res 44:D133–D143

    Article  CAS  PubMed  Google Scholar 

  2. Ishihama A (2010) Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 34:628–645

    Article  CAS  PubMed  Google Scholar 

  3. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Melamed S, Peer A, Faigenbaum-Romm R et al (2016) Global mapping of small RNA-target interactions in bacteria. Mol Cell 63:884–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bouvier M, Sharma CM, Mika F et al (2008) Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol Cell 32:827–837

    Article  CAS  PubMed  Google Scholar 

  6. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smirnov A, Förstner KU, Holmqvist E et al (2016) Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc Natl Acad Sci U S A 113:11591–11596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smirnov A, Wang C, Drewry LL et al (2017) Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J 36:1029–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bandyra KJ, Said N, Pfeiffer V et al (2012) The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol Cell 47:943–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soper T, Mandin P, Majdalani N et al (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci 107:9602–9607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Papenfort K, Sun Y, Miyakoshi M et al (2013) Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153:426–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tree JJ, Granneman S, McAteer SP et al (2014) Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell 55:199–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miyakoshi M, Chao Y, Vogel J (2015) Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J 34:1478–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bossi L, Schwartz A, Guillemardet B et al (2012) A role for Rho-dependent polarity in gene regulation by a noncoding small RNA. Genes Dev 26:1864–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rabhi M, Espéli O, Schwartz A et al (2011) The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators. EMBO J 30:2805–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sedlyarova N, Shamovsky I, Bharati BK et al (2016) sRNA-mediated control of transcription termination in E. coli. Cell 167:111–121.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Winther K, Tree JJ, Tollervey D et al (2016) VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation. Nucleic Acids Res 44:9860–9871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Nues R, Schweikert G, de Leau E et al (2017) Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress. Nat Commun 8:12

    Article  PubMed  PubMed Central  Google Scholar 

  19. Granneman S, Kudla G, Petfalski E et al (2009) Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci U S A 106:9613–9618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holmqvist E, Wright PR, Li L et al (2016) Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 35:e201593360

    Article  Google Scholar 

  21. Chao Y, Li L, Girodat D et al (2017) In vivo cleavage map illuminates the central role of RNase E in coding and noncoding RNA pathways. Mol Cell 65:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Waters SA, McAteer SP, Kudla G et al (2017) Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 36:374–387

    Article  CAS  PubMed  Google Scholar 

  23. Lalaouna D, Carrier MC, Semsey S et al (2015) A 3′ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol Cell 58:393–405

    Article  CAS  PubMed  Google Scholar 

  24. Han K, Tjaden B, Lory S (2016) GRIL-seq provides a method for identifying direct targets of bacterial small regulatory RNA by in vivo proximity ligation. Nat Microbiol 16239:1–10

    Google Scholar 

  25. Dahan S, Knutton S, Shaw RK et al (2004) Transcriptome of enterohemorrhagic Escherichia coli O157 adhering to eukaryotic plasma membranes. Infect Immun 72:5452–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Nostrand EL, Pratt GA, Shishkin AA et al (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13:508–514

    Article  PubMed  PubMed Central  Google Scholar 

  27. Webb S, Hector RD, Kudla G et al (2014) PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol 15:R8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dodt M, Roehr J, Ahmed R et al (2012) FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1:895–905

    Article  PubMed  PubMed Central  Google Scholar 

  29. Uhl M, Houwaart T, Corrado G et al (2016) Computational analysis of CLIP-seq data. Methods 118–119:60–72

    Google Scholar 

  30. Langenberger D, Bermudez-Santana C, Hertel J et al (2009) Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics 25:2298–2301

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai J. Tree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sy, B., Wong, J., Granneman, S., Tollervey, D., Gally, D., Tree, J.J. (2018). High-Resolution, High-Throughput Analysis of Hfq-Binding Sites Using UV Crosslinking and Analysis of cDNA (CRAC). In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics