Skip to main content

Genetic Transformation and Complementation

  • Protocol
  • First Online:
Borrelia burgdorferi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1690))

Abstract

The disciplines of Borrelia (Borreliella) burgdorferi microbiology and Lyme disease pathogenesis have come to depend on the genetic manipulation of the spirochete. Generating mutants in these recalcitrant bacteria, while not straightforward, is routinely accomplished in numerous laboratories, although there are several crucial caveats to consider. This chapter describes the design of basic molecular genetic experiments as well as the detailed methodologies to prepare and transform competent cells, select for and isolate transformants, and complement or genetically restore mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Samuels DS, Mach KE, Garon CF (1994) Genetic transformation of the Lyme disease agent Borrelia burgdorferi with coumarin-resistant gyrB. J Bacteriol 176:6045–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Samuels DS (1995) Electrotransformation of the spirochete Borrelia burgdorferi. In: Nickoloff JA (ed) Electroporation protocols for microorganisms, Methods in molecular biology, vol 47. Humana Press, Totowa, NJ, pp 253–259.

    Google Scholar 

  3. Brisson D, Drecktrah D, Eggers CH, Samuels DS (2012) Genetics of Borrelia burgdorferi. Annu Rev Genet 46:515–536

    Article  CAS  PubMed  Google Scholar 

  4. Groshong AM, Blevins JS (2014) Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. Adv Appl Microbiol 86:41–143

    Article  CAS  PubMed  Google Scholar 

  5. Lin T, Troy EB, Hu LT, Gao L, Norris SJ (2014) Transposon mutagenesis as an approach to improved understanding of Borrelia pathogenesis and biology. Front Cell Infect Microbiol 4:63

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rosa PA, Cabello F, Samuels DS (2010) Genetic manipulation of Borrelia burgdorferi. In: Samuels DS, Radolf JD (eds) Borrelia: molecular biology, host interaction and pathogenesis. Caister Academic Press, Norfolk, UK, pp 189–219

    Google Scholar 

  7. Rosa PA, Tilly K, Stewart PE (2005) The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 3:129–143

    Article  CAS  PubMed  Google Scholar 

  8. Samuels DS (2006) Antibiotic resistance in Borrelia burgdorferi: applications for genetic manipulation and implications for evolution. In: Cabello FC, Hulinska D, Godfrey HP (eds) Molecular biology of spirochetes, NATO science series: life and behavioural sciences, vol 373. IOS Press, Amsterdam, Netherlands, pp 56–70

    Google Scholar 

  9. Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490–516

    Article  CAS  PubMed  Google Scholar 

  10. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb J-F, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quakenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MK, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochete, Borrelia burgdorferi. Nature 390:580–586

    Article  CAS  PubMed  Google Scholar 

  11. Bono JL, Elias AF, Kupko JJ III, Stevenson B, Tilly K, Rosa P (2000) Efficient targeted mutagenesis in Borrelia burgdorferi. J Bacteriol 182:2445–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elias AF, Bono JL, Kupko JJ 3rd, Stewart PE, Krum JG, Rosa PA (2003) New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. J Mol Microbiol Biotechnol 6:29–40

    Article  CAS  PubMed  Google Scholar 

  13. Frank KL, Bundle SF, Kresge ME, Eggers CH, Samuels DS (2003) aadA confers streptomycin-resistance in Borrelia burgdorferi. J Bacteriol 185:6723–6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eggers CH, Caimano MJ, Clawson ML, Miller WG, Samuels DS, Radolf JD (2002) Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for expression of fluorescent reporters in the Lyme disease spirochaete. Mol Microbiol 43:281–296

    Article  CAS  PubMed  Google Scholar 

  15. Sartakova M, Dobrikova E, Cabello FC (2000) Development of an extrachromosomal cloning vector system for use in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97:4850–4855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stewart P, Thalken R, Bono J, Rosa P (2001) Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol Microbiol 39:714–721

    Article  CAS  PubMed  Google Scholar 

  17. Lin T, Gao L, Zhang C, Odeh E, Jacobs MB, Coutte L, Chaconas G, Philipp MT, Norris SJ (2012) Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One 7:e47532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morozova OV, Dubytska LP, Ivanova LB, Moreno CX, Bryksin AV, Sartakova ML, Dobrikova EY, Godfrey HP, Cabello FC (2005) Genetic and physiological characterization of 23S rRNA and ftsJ mutants of Borrelia burgdorferi isolated by mariner transposition. Gene 357:63–72

    Article  CAS  PubMed  Google Scholar 

  19. Stewart PE, Hoff J, Fischer E, Krum JG, Rosa PA (2004) Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants. Appl Environ Microbiol 70:5973–5979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blevins JS, Revel AT, Smith AH, Bachlani GN, Norgard MV (2007) Adaptation of a luciferase gene reporter and lac expression system to Borrelia burgdorferi. Appl Environ Microbiol 73:1501–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilbert MA, Morton EA, Bundle SF, Samuels DS (2007) Artificial regulation of ospC expression in Borrelia burgdorferi. Mol Microbiol 63:1259–1273

    Article  CAS  PubMed  Google Scholar 

  22. Whetstine CR, Slusser JG, Zückert WR (2009) Development of a single-plasmid-based regulatable gene expression system for Borrelia burgdorferi. Appl Environ Microbiol 75:6553–6558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carroll JA, Stewart PE, Rosa P, Elias AF, Garon CF (2003) An enhanced GFP reporter system to monitor gene expression in Borrelia burgdorferi. Microbiology 149:1819–1828

    Article  CAS  PubMed  Google Scholar 

  24. Hayes BM, Jewett MW, Rosa PA (2010) lacZ reporter system for use in Borrelia burgdorferi. Appl Environ Microbiol 76:7407–7412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hyde JA, Weening EH, Chang M, Trzeciakowski JP, Höök M, Cirillo JD, Skare JT (2011) Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that thefibronectin-bindingprotein BBK32 is required for optimal infectivity. Mol Microbiol 82:99–113

    Google Scholar 

  26. Drecktrah D, Douglas JM, Samuels DS (2010) Use of rpsL as a counterselectable marker in Borrelia burgdorferi. Appl Environ Microbiol 76:985–987

    Article  CAS  PubMed  Google Scholar 

  27. Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease—a tick-borne spirochetosis? Science 216:1317–1319

    Article  CAS  PubMed  Google Scholar 

  29. Nickoloff JA (ed) (1995) Electroporation protocols for microorganisms, vol 47. Methods in molecular biology. Humana Press, Totowa, NJ

    Google Scholar 

  30. Samuels DS, Garon CF (1997) Oligonucleotide-mediated genetic transformation of Borrelia burgdorferi. Microbiology 143:519–522

    Article  CAS  PubMed  Google Scholar 

  31. Shigekawa K, Dower WJ (1988) Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells. Biotechniques 6:742–751

    CAS  PubMed  Google Scholar 

  32. Trevors JT, Chassy BM, Dower WJ, Blaschek HP (1992) Electrotransformation of bacteria by plasmid DNA. In: Chang DC, Chassy BM, Saunders JA, Sowers AE (eds) Guide to electroporation and electrofusion. Academic Press, San Diego, pp 265–290

    Google Scholar 

  33. Tilly K, Elias AF, Bono JL, Stewart P, Rosa P (2000) DNA exchange and insertional inactivation in spirochetes. J Mol Microbiol Biotechnol 2:433–442

    CAS  PubMed  Google Scholar 

  34. Kawabata H, Norris SJ, Watanabe H (2004) BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect Immun 72:7147–7754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Labandeira-Rey M, Skare JT (2001) Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect Immun 69:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lawrenz MB, Kawabata H, Purser JE, Norris SJ (2002) Decreased electroporation efficiency in Borrelia burgdorferi containing linear plasmids lp25 and lp56: impact on transformation of infectious B. burgdorferi. Infect Immun 70:4798–4804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Purser JE, Norris SJ (2000) Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97:13865–13870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elias AF, Stewart PE, Grimm D, Caimano MJ, Eggers CH, Tilly K, Bono JL, Akins DR, Radolf JD, Schwan TG, Rosa P (2002) Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70:2139–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Caimano MJ, Eggers CH, Hazlett KRO, Radolf JD (2004) RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun 72:6433–6445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hübner A, Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV (2001) Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98:12724–12729

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV (2004) Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199:641–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan K, Alter L, Barthold SW, Parveen N (2015) Disruption of bbe02 by insertion of a luciferase gene increases transformation efficiency of Borrelia burgdorferi and allows live imaging in Lyme disease susceptible C3H mice. PLoS One 10:e0129532

    Article  PubMed  PubMed Central  Google Scholar 

  43. Parveen N, Cornell KA, Bono JL, Chamberland C, Rosa P, Leong JM (2006) Bgp, a secreted glycosaminoglycan-binding protein of Borrelia burgdorferi strain N40, displays nucleosidase activity and is not essential for infection of immunodeficient mice. Infect Immun 74:3016–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fingerle V, Goettner G, Gern L, Wilske B, Schulte-Spechtel U (2007) Complementation of a Borrelia afzelii OspC mutant highlights the crucial role of OspC for dissemination of Borrelia afzelii in Ixodes ricinus. Int J Med Microbiol 297:97–107

    Article  CAS  PubMed  Google Scholar 

  45. Eggers CH, Caimano MJ, Radolf JD (2006) Sigma factor selectivity in Borrelia burgdorferi: RpoS recognition of the ospE/ospF/elp promoters is dependent on the sequence of the −10 region. Mol Microbiol 59:1859–1875

    Article  CAS  PubMed  Google Scholar 

  46. Johnson RC, Schmid GP, Hyde FW, Steigerwalt AG, Brenner DJ (1984) Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int J Syst Bacteriol 34:496–497

    Article  Google Scholar 

  47. Di L, Pagan PE, Packer D, Martin CL, Akther S, Ramrattan G, Mongodin EF, Fraser CM, Schutzer SE, Luft BJ, Casjens SR, Qiu W-G (2014) BorreliaBase: a phylogeny-centered browser of Borrelia genomes. BMC Bioinformatics 15:233

    Article  PubMed  PubMed Central  Google Scholar 

  48. Casjens SR, Mongodin EF, Qiu W-G, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM (2012) Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 7:e33280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen Q, Fischer JR, Benoit VM, Dufour NP, Youderian P, Leong JM (2008) In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J Bacteriol 190:7885–7891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rego ROM, Bestor A, Rosa PA (2011) Defining the plasmid-borne restriction-modification systems of the Lyme disease spirochete Borrelia burgdorferi. J Bacteriol 193:1161–1171

    Article  CAS  PubMed  Google Scholar 

  51. Purser JE, Lawrenz MB, Caimano MJ, Howell JK, Radolf JD, Norris SJ (2003) A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host. Mol Microbiol 48:753–764

    Article  CAS  PubMed  Google Scholar 

  52. Jewett MW, Lawrence K, Bestor AC, Tilly K, Grimm D, Shaw P, VanRaden M, Gherardini F, Rosa PA (2007) The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Mol Microbiol 64:1358–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Samuels DS, Garon CF (1993) Coumermycin A1 inhibits growth and induces relaxation of supercoiled plasmids in Borrelia burgdorferi, the Lyme disease agent. Antimicrob Agents Chemother 37:46–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Samuels DS, Marconi RT, Huang WM, Garon CF (1994) gyrB mutations in coumermycin A1-resistant Borrelia burgdorferi. J Bacteriol 176:3072–3075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Knight SW, Kimmel BJ, Eggers CH, Samuels DS (2000) Disruption of the Borrelia burgdorferi gac gene, encoding the naturally synthesized GyrA C-terminaldomain. J Bacteriol 182:2048–2051

    Google Scholar 

  56. Rosa P, Samuels DS, Hogan D, Stevenson B, Casjens S, Tilly K (1996) Directed insertion of a selectable marker into a circular plasmid of Borrelia burgdorferi. J Bacteriol 178:5946–5953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alverson J, Samuels DS (2002) groEL expression in gyrB mutants of Borrelia burgdorferi. J Bacteriol 184:6069–6072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alverson J, Bundle SF, Sohaskey CD, Lybecker MC, Samuels DS (2003) Transcriptional regulation of the ospAB and ospC promoters from Borrelia burgdorferi. Mol Microbiol 48:1665–1677

    Article  CAS  PubMed  Google Scholar 

  59. Sohaskey CD, Barbour AG (1999) Esterases in serum-containing growth media counteract chloramphenicol acetyltransferase activity in vitro. Antimicrob Agents Chemother 43:655–660

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Criswell D, Tobiason VL, Lodmell JS, Samuels DS (2006) Mutations conferring aminoglycoside and spectinomycin resistance in Borrelia burgdorferi. Antimicrob Agents Chemother 50:445–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Drecktrah D, Lybecker M, Popitsch N, Rescheneder P, Hall LS, Samuels DS (2015) The Borrelia burgdorferi RelA/SpoT homolog and stringent response regulate survival in the tick vector and global gene expression during starvation. PLoS Pathog 11:e1005160

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hoon-Hanks LL, Morton EA, Lybecker MC, Battisti JM, Samuels DS, Drecktrah D (2012) Borrelia burgdorferi malQ mutants utilize disaccharides and traverse the enzootic cycle. FEMS Immunol Med Microbiol 66:157–165

    Google Scholar 

  63. Lybecker MC, Abel CA, Feig AL, Samuels DS (2010) Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 78:622–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lybecker MC, Samuels DS (2007) Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol Microbiol 64:1075–1089

    Article  CAS  PubMed  Google Scholar 

  65. Sultan SZ, Pitzer JE, Miller MR, Motaleb MA (2010) Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence. Mol Microbiol 77:128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ge Y, Old IG, Saint Girons I, Charon NW (1997) Molecular characterization of a large Borrelia burgdorferi motility operon which is initiated by a consensus σ70 promoter. J Bacteriol 179:2289–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Babitzke P, Yealy J, Campanelli D (1996) Interaction of the trp RNA-binding attenuation protein (TRAP) of Bacillus subtilis with RNA: effects of the number of GAG repeats, the nucleotides separating adjacent repeats, and RNA secondary structure. J Bacteriol 178:5159–5163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Drecktrah D, Hall LS, Hoon-Hanks LL, Samuels DS (2013) An inverted repeat in the ospC operator is required for induction in Borrelia burgdorferi. PLoS One 8:e68799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Earnhart CG, LeBlanc DV, Alix KE, Desrosiers DC, Radolf JD, Marconi RT (2010) Identification of residues within ligand-binding domain 1 (LBD1) of the Borrelia burgdorferi OspC protein required for function in the mammalian environment. Mol Microbiol 76:393–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang XF, Alani SM, Norgard MV (2003) The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 100:11001–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Beaurepaire C, Chaconas G (2005) Mapping of essential replication functions of the linear plasmid lp17 of B. burgdorferi by targeted deletion walking. Mol Microbiol 57:132–142

    Article  CAS  PubMed  Google Scholar 

  72. Grimm D, Eggers CH, Caimano MJ, Tilly K, Stewart PE, Elias AF, Radolf JD, Rosa PA (2004) Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect Immun 72:5938–5946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bundoc VG, Barbour AG (1989) Clonal polymorphisms of outer membrane protein OspB of Borrelia burgdorferi. Infect Immun 57:2733–2741

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kurtti TJ, Munderloh UG, Johnson RC, Ahlstrand GG (1987) Colony formation and morphology in Borrelia burgdorferi. J Clin Microbiol 25:2054–2058

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rosa PA, Hogan DM (1992) Colony formation by Borrelia burgdorferi in solid medium: clonal analysis of osp locus variants. In: Munderloh UG, Kurtti TJ (eds) First international conference on tick-borne pathogens at the host-vector Interface: an agenda for research. University of Minnesota, St. Paul, pp 95–103

    Google Scholar 

  76. Bunikis I, Kutschan-Bunikis S, Bonde M, Bergström S (2011) Multiplex PCR as a tool for validating plasmid content of Borrelia burgdorferi. J Microbiol Methods 86:243–247

    Article  CAS  PubMed  Google Scholar 

  77. Tilly K, Krum JG, Bestor A, Jewett MW, Grimm D, Bueschel D, Byram R, Dorward D, Vanraden MJ, Stewart P, Rosa P (2006) Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun 74:3554–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marconi RT, Samuels DS, Garon CF (1993) Transcriptional analyses and mapping of the ospC gene in Lyme disease spirochetes. J Bacteriol 175:926–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Phil Stewart for thoughtful review of the manuscript, Rich Marconi, Patti Rosa, Tom Schwan, and Kit Tilly for advice during development of the original protocol in the early 1990s, Frank Yang for suggesting the cloning-by-limiting-dilution protocol, and Christian Eggers, Mike Gilbert, Meghan Lybecker and the other members, past and present, of our laboratory for useful discussions. Genetic transformation and complementation experiments in our laboratory are supported by National Institutes of Health grant AI051486 (to D.S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Scott Samuels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Samuels, D.S., Drecktrah, D., Hall, L.S. (2018). Genetic Transformation and Complementation. In: Pal, U., Buyuktanir, O. (eds) Borrelia burgdorferi. Methods in Molecular Biology, vol 1690. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7383-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7383-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7382-8

  • Online ISBN: 978-1-4939-7383-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics