Skip to main content

Zymography as a Research Tool in the Study of Matrix Metalloproteinase Inhibitors

  • Protocol
  • First Online:
Zymography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1626))

Abstract

Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM) and play a role in tissue remodeling. Changes in MMPs have been observed in cancer, connective tissue disorders, and vascular disease, and both endogenous tissue inhibitors of MMPs (TIMPs) and synthetic MMP inhibitors (MMPIs) have been evaluated as modulators of MMP activity in various biological systems. Zymography is a simple technique that is commonly used to assess MMP activity and the efficacy of MMPIs. Also, reverse zymography is a modified technique to study the activity of endogenous TIMPs. However, problems are often encountered during the zymography procedure, which could interfere with accurate assessment of MMP activity in control specimens, and thus make it difficult to determine the pathological changes in MMPs and their responsiveness to MMPIs. Simplified protocols for preparation of experimental solutions, tissue preparation, regular and reverse zymography procedures, and zymogram analysis are presented. Additional helpful tips to troubleshoot problems in the zymography technique and to enhance the quality of the zymograms should make it more feasible to determine the changes in MMPs and assess the efficacy of MMPIs in modulating MMP activity in various biological systems and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A/C:

Acrylamide/bis-acrylamide

ECM:

Extracellular matrix

MMP:

Matrix metalloproteinase

MMPI:

MMP inhibitor

MT-MMP:

Membrane-type-MMP

RUPP:

Reduction in uterine perfusion pressure

TIMP:

Tissue inhibitor of MMP

Zn2+ :

Zinc ion

References

  1. Benjamin MM, Khalil RA (2012) Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXS 103:209–279

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839

    Article  CAS  PubMed  Google Scholar 

  3. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90(3):251–262

    CAS  PubMed  Google Scholar 

  4. English WR, Holtz B, Vogt G, Knauper V, Murphy G (2001) Characterization of the role of the “MT-loop”: an eight-amino acid insertion specific to progelatinase A (MMP2) activating membrane-type matrix metalloproteinases. J Biol Chem 276(45):42018–42026

    Article  CAS  PubMed  Google Scholar 

  5. Kucukguven A, Khalil RA (2013) Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins. Curr Drug Targets 14(3):287–324

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pei D, Kang T, Qi H (2000) Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem 275(43):33988–33997

    Article  CAS  PubMed  Google Scholar 

  7. Ellerbroek SM, Wu YI, Overall CM, Stack MS (2001) Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. J Biol Chem 276(27):24833–24842

    Article  CAS  PubMed  Google Scholar 

  8. Palei AC, Granger JP, Tanus-Santos JE (2013) Matrix metalloproteinases as drug targets in preeclampsia. Curr Drug Targets 14(3):325–334

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bode W, Fernandez-Catalan C, Grams F, Gomis-Ruth FX, Nagase H, Tschesche H, Maskos K (1999) Insights into MMP-TIMP interactions. Ann N Y Acad Sci 878:73–91

    Article  CAS  PubMed  Google Scholar 

  10. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    Article  CAS  PubMed  Google Scholar 

  11. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477(1–2):267–283

    Article  CAS  PubMed  Google Scholar 

  12. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115(Pt 19):3719–3727

    Article  CAS  PubMed  Google Scholar 

  13. Murphy G (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12(11):233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Argraves WS (1990) Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem 265(29):17401–17404

    CAS  PubMed  Google Scholar 

  15. Bode W, Maskos K (2003) Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biol Chem 384(6):863–872

    Article  CAS  PubMed  Google Scholar 

  16. Jacobsen JA, Major Jourden JL, Miller MT, Cohen SM (2010) To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta 1803(1):72–94

    Article  CAS  PubMed  Google Scholar 

  17. Whittaker M, Floyd CD, Brown P, Gearing AJ (1999) Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 99(9):2735–2776

    Article  CAS  PubMed  Google Scholar 

  18. Macaulay VM, O'Byrne KJ, Saunders MP, Braybrooke JP, Long L, Gleeson F, Mason CS, Harris AL, Brown P, Talbot DC (1999) Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin Cancer Res 5(3):513–520

    CAS  PubMed  Google Scholar 

  19. Fingleton B (2006) Matrix metalloproteinases: roles in cancer and metastasis. Front Biosci 11:479–491

    Article  CAS  PubMed  Google Scholar 

  20. Miller KD, Saphner TJ, Waterhouse DM, Chen TT, Rush-Taylor A, Sparano JA, Wolff AC, Cobleigh MA, Galbraith S, Sledge GW (2004) A randomized phase II feasibility trial of BMS-275291 in patients with early stage breast cancer. Clin Cancer Res 10(6):1971–1975

    Article  CAS  PubMed  Google Scholar 

  21. Leighl NB, Paz-Ares L, Douillard JY, Peschel C, Arnold A, Depierre A, Santoro A, Betticher DC, Gatzemeier U, Jassem J, Crawford J, Tu D, Bezjak A, Humphrey JS, Voi M, Galbraith S, Hann K, Seymour L, Shepherd FA (2005) Randomized phase III study of matrix metalloproteinase inhibitor BMS-275291 in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: National Cancer Institute of Canada-Clinical Trials Group Study BR.18. J Clin Oncol 23(12):2831–2839

    Article  CAS  PubMed  Google Scholar 

  22. Lutz J, Yao Y, Song E, Antus B, Hamar P, Liu S, Heemann U (2005) Inhibition of matrix metalloproteinases during chronic allograft nephropathy in rats. Transplantation 79(6):655–661

    Article  CAS  PubMed  Google Scholar 

  23. Lee M, Bernardo MM, Meroueh SO, Brown S, Fridman R, Mobashery S (2005) Synthesis of chiral 2-(4-phenoxyphenylsulfonylmethyl)thiiranes as selective gelatinase inhibitors. Org Lett 7(20):4463–4465

    Article  CAS  PubMed  Google Scholar 

  24. Olson MW, Gervasi DC, Mobashery S, Fridman R (1997) Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem 272(47):29975–29983

    Article  CAS  PubMed  Google Scholar 

  25. Kleifeld O, Kotra LP, Gervasi DC, Brown S, Bernardo MM, Fridman R, Mobashery S, Sagi I (2001) X-ray absorption studies of human matrix metalloproteinase-2 (MMP-2) bound to a highly selective mechanism-based inhibitor. Comparison with the latent and active forms of the enzyme. J Biol Chem 276(20):17125–17131

    Article  CAS  PubMed  Google Scholar 

  26. Grams F, Brandstetter H, D'Alo S, Geppert D, Krell HW, Leinert H, Livi V, Menta E, Oliva A, Zimmermann G, Gram F, Livi VE (2001) Pyrimidine-2,4,6-triones: a new effective and selective class of matrix metalloproteinase inhibitors. Biol Chem 382(8):1277–1285

    Article  CAS  PubMed  Google Scholar 

  27. Fisher JF, Mobashery S (2006) Recent advances in MMP inhibitor design. Cancer Metastasis Rev 25(1):115–136

    Article  CAS  PubMed  Google Scholar 

  28. Reiter LA, Mitchell PG, Martinelli GJ, Lopresti-Morrow LL, Yocum SA, Eskra JD (2003) Phosphinic acid-based MMP-13 inhibitors that spare MMP-1 and MMP-3. Bioorg Med Chem Lett 13(14):2331–2336

    Article  CAS  PubMed  Google Scholar 

  29. Dive V, Georgiadis D, Matziari M, Makaritis A, Beau F, Cuniasse P, Yiotakis A (2004) Phosphinic peptides as zinc metalloproteinase inhibitors. Cell Mol Life Sci 61(16):2010–2019

    Article  CAS  PubMed  Google Scholar 

  30. Sorsa T, Tjaderhane L, Konttinen YT, Lauhio A, Salo T, Lee HM, Golub LM, Brown DL, Mantyla P (2006) Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med 38(5):306–321

    Article  CAS  PubMed  Google Scholar 

  31. Rudek MA, Figg WD, Dyer V, Dahut W, Turner ML, Steinberg SM, Liewehr DJ, Kohler DR, Pluda JM, Reed E (2001) Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer. J Clin Oncol 19(2):584–592

    Article  CAS  PubMed  Google Scholar 

  32. Schechter I, Berger A (1968) On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun 32(5):898–902

    Article  CAS  PubMed  Google Scholar 

  33. MacColl E, Khalil RA (2015) Matrix metalloproteinases as regulators of vein structure and function: implications in chronic venous disease. J Pharmacol Exp Ther 355(3):410–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park HI, Jin Y, Hurst DR, Monroe CA, Lee S, Schwartz MA, Sang QX (2003) The intermediate S1′ pocket of the endometase/matrilysin-2 active site revealed by enzyme inhibition kinetic studies, protein sequence analyses, and homology modeling. J Biol Chem 278(51):51646–51653

    Article  CAS  PubMed  Google Scholar 

  35. Aureli L, Gioia M, Cerbara I, Monaco S, Fasciglione GF, Marini S, Ascenzi P, Topai A, Coletta M (2008) Structural bases for substrate and inhibitor recognition by matrix metalloproteinases. Curr Med Chem 15(22):2192–2222

    Article  CAS  PubMed  Google Scholar 

  36. Fabre B, Ramos A, de Pascual-Teresa B (2014) Targeting matrix metalloproteinases: exploring the dynamics of the s1′ pocket in the design of selective, small molecule inhibitors. J Med Chem 57(24):10205–10219

    Article  CAS  PubMed  Google Scholar 

  37. Hu Y, Xiang JS, DiGrandi MJ, Du X, Ipek M, Laakso LM, Li J, Li W, Rush TS, Schmid J, Skotnicki JS, Tam S, Thomason JR, Wang Q, Levin JI (2005) Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. Bioorg Med Chem 13(24):6629–6644

    Article  CAS  PubMed  Google Scholar 

  38. Udi Y, Fragai M, Grossman M, Mitternacht S, Arad-Yellin R, Calderone V, Melikian M, Toccafondi M, Berezovsky IN, Luchinat C, Sagi I (2013) Unraveling hidden regulatory sites in structurally homologous metalloproteases. J Mol Biol 425(13):2330–2346

    Article  CAS  PubMed  Google Scholar 

  39. Overall CM, Kleifeld O (2006) Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br J Cancer 94(7):941–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ndinguri MW, Bhowmick M, Tokmina-Roszyk D, Robichaud TK, Fields GB (2012) Peptide-based selective inhibitors of matrix metalloproteinase-mediated activities. Molecules 17(12):14230–14248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkila P, Kantor C, Gahmberg CG, Salo T, Konttinen YT, Sorsa T, Ruoslahti E, Pasqualini R (1999) Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17(8):768–774

    Article  CAS  PubMed  Google Scholar 

  42. Suojanen J, Salo T, Koivunen E, Sorsa T, Pirila E (2009) A novel and selective membrane type-1 matrix metalloproteinase (MT1-MMP) inhibitor reduces cancer cell motility and tumor growth. Cancer Biol Ther 8(24):2362–2370

    Article  CAS  PubMed  Google Scholar 

  43. Devy L, Dransfield DT (2011) New strategies for the next generation of matrix-metalloproteinase inhibitors: selectively targeting membrane-anchored MMPs with therapeutic antibodies. Biochem Res Int 2011:191670

    Article  PubMed  Google Scholar 

  44. Devy L, Huang L, Naa L, Yanamandra N, Pieters H, Frans N, Chang E, Tao Q, Vanhove M, Lejeune A, van Gool R, Sexton DJ, Kuang G, Rank D, Hogan S, Pazmany C, Ma YL, Schoonbroodt S, Nixon AE, Ladner RC, Hoet R, Henderikx P, Tenhoor C, Rabbani SA, Valentino ML, Wood CR, Dransfield DT (2009) Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res 69(4):1517–1526

    Article  CAS  PubMed  Google Scholar 

  45. Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23(3):344–348

    Article  CAS  PubMed  Google Scholar 

  46. Hu J, Van den Steen PE, Houde M, Ilenchuk TT, Opdenakker G (2004) Inhibitors of gelatinase B/matrix metalloproteinase-9 activity comparison of a peptidomimetic and polyhistidine with single-chain derivatives of a neutralizing monoclonal antibody. Biochem Pharmacol 67(5):1001–1009

    Article  CAS  PubMed  Google Scholar 

  47. Martens E, Leyssen A, Van Aelst I, Fiten P, Piccard H, Hu J, Descamps FJ, Van den Steen PE, Proost P, Van Damme J, Liuzzi GM, Riccio P, Polverini E, Opdenakker G (2007) A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim Biophys Acta 1770(2):178–186

    Article  CAS  PubMed  Google Scholar 

  48. Sela-Passwell N, Kikkeri R, Dym O, Rozenberg H, Margalit R, Arad-Yellin R, Eisenstein M, Brenner O, Shoham T, Danon T, Shanzer A, Sagi I (2011) Antibodies targeting the catalytic zinc complex of activated matrix metalloproteinases show therapeutic potential. Nat Med 18(1):143–147

    Article  PubMed  Google Scholar 

  49. Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102(1):196–202

    Article  CAS  PubMed  Google Scholar 

  50. Murphy G, Crabbe T (1995) Gelatinases A and B. Methods Enzymol 248:470–484

    Article  CAS  PubMed  Google Scholar 

  51. Hawkes SP, Li H, Taniguchi GT (2010) Zymography and reverse zymography for detecting MMPs and TIMPs. Methods Mol Biol 622:257–269

    Article  CAS  PubMed  Google Scholar 

  52. Lombard C, Saulnier J, Wallach J (2005) Assays of matrix metalloproteinases (MMPs) activities: a review. Biochimie 87(3–4):265–272

    Article  CAS  PubMed  Google Scholar 

  53. Snoek-van Beurden PA, Von den Hoff JW (2005) Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques 38(1):73–83

    Article  CAS  PubMed  Google Scholar 

  54. Yin Z, Sada AA, Reslan OM, Narula N, Khalil RA (2012) Increased MMPs expression and decreased contraction in the rat myometrium during pregnancy and in response to prolonged stretch and sex hormones. Am J Physiol Endocrinol Metab 303(1):E55–E70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  56. Kleiner DE, Stetler-Stevenson WG (1994) Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem 218(2):325–329

    Article  CAS  PubMed  Google Scholar 

  57. Michaud D, Cantin L, Raworth DA, Vrain TC (1996) Assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin-polyacrylamide gel electrophoresis. Electrophoresis 17(1):74–79

    Article  CAS  PubMed  Google Scholar 

  58. Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G (1996) Biochemical characterization of human collagenase-3. J Biol Chem 271(3):1544–1550

    Article  CAS  PubMed  Google Scholar 

  59. Bjornland K, Winberg JO, Odegaard OT, Hovig E, Loennechen T, Aasen AO, Fodstad O, Maelandsmo GM (1999) S100A4 involvement in metastasis: deregulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in osteosarcoma cells transfected with an anti-S100A4 ribozyme. Cancer Res 59(18):4702–4708

    CAS  PubMed  Google Scholar 

  60. Fernandez-Resa P, Mira E, Quesada AR (1995) Enhanced detection of casein zymography of matrix metalloproteinases. Anal Biochem 224(1):434–435

    Article  CAS  PubMed  Google Scholar 

  61. Gogly B, Groult N, Hornebeck W, Godeau G, Pellat B (1998) Collagen zymography as a sensitive and specific technique for the determination of subpicogram levels of interstitial collagenase. Anal Biochem 255(2):211–216

    Article  CAS  PubMed  Google Scholar 

  62. Yu WH, Woessner JF Jr (2001) Heparin-enhanced zymographic detection of matrilysin and collagenases. Anal Biochem 293(1):38–42

    Article  CAS  PubMed  Google Scholar 

  63. Woessner JF Jr (1995) Quantification of matrix metalloproteinases in tissue samples. Methods Enzymol 248:510–528

    Article  CAS  PubMed  Google Scholar 

  64. Kupai K, Szucs G, Cseh S, Hajdu I, Csonka C, Csont T, Ferdinandy P (2010) Matrix metalloproteinase activity assays: importance of zymography. J Pharmacol Toxicol Methods 61(2):205–209

    Article  CAS  PubMed  Google Scholar 

  65. Masure S, Proost P, Van Damme J, Opdenakker G (1991) Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8. Eur J Biochem 198(2):391–398

    Article  CAS  PubMed  Google Scholar 

  66. Garfin DE (2009) One-dimensional gel electrophoresis. Methods Enzymol 463:497–513

    Article  CAS  PubMed  Google Scholar 

  67. Pitt-Rivers R, Impiombato FS (1968) The binding of sodium dodecyl sulphate to various proteins. Biochem J 109(5):825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shapiro AL, Vinuela E, Maizel JV Jr (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 28(5):815–820

    Article  CAS  PubMed  Google Scholar 

  69. Ikeda M, Maekawa R, Tanaka H, Matsumoto M, Takeda Y, Tamura Y, Nemori R, Yoshioka T (2000) Inhibition of gelatinolytic activity in tumor tissues by synthetic matrix metalloproteinase inhibitor: application of film in situ zymography. Clin Cancer Res 6(8):3290–3296

    CAS  PubMed  Google Scholar 

  70. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37(6):375–536

    Article  PubMed  Google Scholar 

  71. Springman EB, Angleton EL, Birkedal-Hansen H, Van Wart HE (1990) Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc Natl Acad Sci U S A 87(1):364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A 87(14):5578–5582

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li W, Mata KM, Mazzuca MQ, Khalil RA (2014) Altered matrix metalloproteinase-2 and -9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy. Biochem Pharmacol 89(3):370–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Heart, Lung, and Blood Institute (HL-65998, HL-98724, HL-111775). Dr. Zongli Ren was a visiting scholar from the Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China, and a recipient of scholarship from the China Scholarship Council. Dr. Juanjuan Chen was a visiting scholar from the Department of Obstetrics & Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China 510150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raouf A. Khalil M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ren, Z., Chen, J., Khalil, R.A. (2017). Zymography as a Research Tool in the Study of Matrix Metalloproteinase Inhibitors. In: Wilkesman, J., Kurz, L. (eds) Zymography. Methods in Molecular Biology, vol 1626. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7111-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7111-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7109-1

  • Online ISBN: 978-1-4939-7111-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics