Skip to main content

Development of Novel Piezoelectric Biosensor Using PZT Ceramic Resonator for Detection of Cancer Markers

  • Protocol
  • First Online:
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1572))

Abstract

A novel biosensor based on piezoelectric ceramic resonator was developed for direct detection of cancer markers in the study. For the first time, a commercially available PZT ceramic resonator with high resonance frequency was utilized as transducer for a piezoelectric biosensor. A dual ceramic resonators scheme was designed wherein two ceramic resonators were connected in parallel: one resonator was used as the sensing unit and the other as the control unit. This arrangement minimizes environmental influences including temperature fluctuation, while achieving the required frequency stability for biosensing applications. The detection of the cancer markers Prostate Specific Antigen (PSA) and α-Fetoprotein (AFP) was carried out through frequency change measurement. The device showed high sensitivity (0.25 ng/ml) and fast detection (within 30 min) with small samples (1 μl), which is compatible with the requirements of clinical measurements. The results also showed that the ceramic resonator-based piezoelectric biosensor platform could be utilized with different chemical interfaces, and had the potential to be further developed into biosensor arrays with different specificities for simultaneous detection of multiple analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Setter N (2002) Piezoelectric materials in devices, Ceramics Laboratory, EPFL, Switzerland

    Google Scholar 

  2. Ward MD, Buttry DA (1991) In situ interfacial mass detection with piezoelectric transducers. Science 249:1000–1007

    Article  Google Scholar 

  3. Suleiman AA, Guilbault GG (1994) Recent developments in piezoelectric immunosensors. A review. Analyst 119:2279–2282

    Article  CAS  Google Scholar 

  4. Bizet K, Gabrielli C, Perrot H (1999) Biosensors based on piezolectric transducers. Analusis 27(7):609–616

    Article  CAS  Google Scholar 

  5. Zhao YY, Fu YM, Wang PL et al (2015) Highly stable piezo-immunoglobulin-biosensing of a SiO2/ZnO nanogenerator as a self powered/active biosensor arising from the field effect influenced piezoelectric screening effect. Nanoscale 5(7):1904–1911

    Article  Google Scholar 

  6. Lu X, Guo QS, Xu Z et al (2015) Biosensor platform based on stress-improved piezoelectric membrane. Sensor Actuator 179:32–38

    Article  Google Scholar 

  7. Su L, Zou L, Fong CC et al (2013) Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer. Biosens Bioelectron 46:155–161

    Article  CAS  Google Scholar 

  8. Babacan S, Pivarnik P, Letcher S et al (2000) Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens Bioelectron 15:615–621

    Article  CAS  Google Scholar 

  9. Susmel S, Toniolo R, Pizzariello A et al (2005) A piezoelectric immunosensor based on antibody entrapment within a non-totally rigid polymeric film. Sensor Actuator 111–112:331–338

    Article  Google Scholar 

  10. Sauerbrey GZ (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  11. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution−surface interface. Biomacromolecules 4(5):1099–1120

    Article  CAS  Google Scholar 

  12. Percival CJ, Stanley S, Galle TM et al (2001) Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes. Anal Chem 73(17):4225–4228

    Article  CAS  Google Scholar 

  13. Su X, Chew FT, Li SF (2000) Piezoelectric quartz crystal based label-free analysis for allergy disease. Biosens Bioelectron 15(11–12):629–639

    Article  CAS  Google Scholar 

  14. Yao C, Qi Y, Zhao Y et al (2009) Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE. Biosens Bioelectron 24(8):2499–2503

    Article  CAS  Google Scholar 

  15. Zhang Y, Lin F, Zhang Y et al (2011) Quartz crystal microbalance detection of DNA single-base mutation based on monobase-coded cadmium tellurium nanoprobe. Anal Sci 27(12):1229–1235

    Article  Google Scholar 

  16. Deng T, Li JS, Wang H et al (2005) Piezoelectric immunoassay for complement C4 based on a Nafion-modified interface for antibody immobilization. J Immunol Methods 299(1–2):1–8

    Article  CAS  Google Scholar 

  17. Soumetz FC, Pastorino L, Ruggiero C (2009) Development of a piezoelectric immunosensor for matrix metalloproteinase-1 detection. Conf Proc IEEE Eng Med Biol Soc 2009:2775–2778

    Google Scholar 

  18. Yuan JB, Tan YG, Nie LH, Yao SZ (2002) Piezoelectric quartz crystal sensors based on ion-pair complexes for the determination of cinchonine in human serum and urine. Anal Chim Acta 454:65–74

    Article  CAS  Google Scholar 

  19. Lee GM, Kim BH (2005) Effects of thermal aging on temperature stability of Pb(ZryTi1−y)O3 + x(wt.%)Cr2O3 ceramics. Mater Chem Phys 91:233–236

    Article  CAS  Google Scholar 

  20. Gualtieri JG, Kosinski JA, Ballato A (1994) Piezoelectric materials for acoustic wave applications. IEEE Trans Ultrason Ferroelectr Freq Contr 41:53–59

    Article  Google Scholar 

  21. Feuillard G, Lethiecq M, Janin Y, Tessier L, Pourcelot L (1997) Comparative performance of piezoceramic and crystal SAW filters. IEEE Trans Ultrason Ferroelectr Freq Contr 44:194–197

    Article  CAS  Google Scholar 

  22. Lee PCY, Yu JD, Li X, Shih WH (1999) Piezoelectric ceramic disks with thickness-graded material properties. IEEE Trans Ultrason Ferroelectr Freq Contr 46:205–215

    Article  CAS  Google Scholar 

  23. Kwork KW, Chan HLW, Choy CL (1997) Evaluation of the material parameters of piezoelectric materials by various methods. IEEE Trans Ultrason Ferroelectr Freq Contr 44:733–742

    Article  Google Scholar 

  24. Ferari V, Marioli D, Taroni A et al (2000) Multisensor array of mass microbalances for chemical detection based on resonant piezo-layers of screen-printed PZT. Sens Actuators B 68:81–87

    Article  Google Scholar 

  25. Verissimo MIS, Mantas PQ, Senos AMR et al (2003) Suitability of PZT ceramics for mass sensors versus widespread used quartz crystals. Sens Actuators B 95:25–31

    Article  CAS  Google Scholar 

  26. Eklund A, Backlund T, Lindahl OA (2000) A resonator sensor for measurement of intraocular pressure—evaluation in an in vitro pig-eye model. Physiol Meas 21:355–367

    Article  CAS  Google Scholar 

  27. Lee JH, Hwang KS, Park J, Yoon KH et al (2005) Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens Bioelectron 20(10):2157–2162

    Article  CAS  Google Scholar 

  28. Hu LS, Fong CC, Zou L et al (2014) Label-free detection of endocrine disrupting chemicals by integrating a competitive binding assay with a piezoelectric ceramic resonator. Biosens Bioelectron 53:406–413

    Article  CAS  Google Scholar 

  29. Tang AXJ, Pravda M, Guilbault GG et al (2002) Immunosensor for okadaic acid using quartz crystal microbalance. Anal Chim Acta 471:33–40

    Article  CAS  Google Scholar 

  30. Erhart J, Rusin L, Seifert L (2007) Resonant frequency temperature coefficients for the piezoelectric resonators working in various vibration modes. J Electroceramics 19:403–406

    Article  Google Scholar 

  31. Lee JH, Yoon KH, Hwang KS et al (2004) Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens Bioelectron 20(2):269–275

    Article  CAS  Google Scholar 

  32. Lente MH, Zanin AL, Vasiljevic J et al (2004) Temperature coefficient of piezoelectric constants in Pb(Mg1/3 Nb2/3)O3–PbTiO3 ceramics. Mater Res 7:369–372

    Article  CAS  Google Scholar 

  33. Deshpande SS (1996) Antibodies: biochemistry, structure, and function. In: Enzyme immunoassays: from concept to product development. Chapman and Hill, New York, pp 24–51

    Google Scholar 

  34. Ilic D, Forbes KM, Hassed C (2011) Lycopene for the prevention of prostate cancer. Cochrane Database Syst Rev 11:CD008007

    Google Scholar 

  35. Zhou YM, Wu ZY, Shen GL, Yu RQ (2003) An amperometric immunosensor based on Nafion-modified electrode for the determination of Schistosoma japonicum antibody. Sens Actuators B 89:292–298

    Article  CAS  Google Scholar 

  36. Chetcuti AF, Wong DKY (1999) An indirect perfluorosulfonated ionomer-coated electrochemical immunosensor for the detection of the protein human chorionic gonadotrophin. Anal Chem 71:4088–4094

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengsu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Su, L., Fong, CC., Cheung, PY., Yang, M. (2017). Development of Novel Piezoelectric Biosensor Using PZT Ceramic Resonator for Detection of Cancer Markers. In: Prickril, B., Rasooly, A. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1572. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6911-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6911-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6910-4

  • Online ISBN: 978-1-4939-6911-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics