Skip to main content

Introduction: History of SH2 Domains and Their Applications

  • Protocol
  • First Online:
SH2 Domains

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1555))

Abstract

The Src Homology 2 (SH2) domain is the prototypical protein interaction module that lies at the heart of phosphotyrosine signaling. Since its serendipitous discovery, there has been a tremendous advancement in technologies and an array of techniques available for studying SH2 domains and phosphotyrosine signaling. In this chapter, we provide a glimpse of the history of SH2 domains and describe many of the tools and techniques that have been developed along the way and discuss future directions for SH2 domain studies. We highlight the gist of each chapter in this volume in the context of: the structural biology and phosphotyrosine binding; characterizing SH2 specificity and generating prediction models; systems biology and proteomics; SH2 domains in signal transduction; and SH2 domains in disease, diagnostics, and therapeutics. Many of the individual chapters provide an in-depth approach that will allow scientists to interrogate the function and role of SH2 domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sadowski I, Stone JC, Pawson T (1986) A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol Cell Biol 6(12):4396–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DeClue JE, Sadowski I, Martin GS, Pawson T (1987) A conserved domain regulates interactions of the v-fps protein-tyrosine kinase with the host cell. Proc Natl Acad Sci U S A 84(24):9064–9068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sadowski I, Pawson T (1987) Catalytic and non-catalytic domains of the Fujinami sarcoma virus P130gag-fps protein-tyrosine kinase distinguished by the expression of v-fps polypeptides in Escherichia coli. Oncogene 1(2):181–191

    CAS  PubMed  Google Scholar 

  4. Stone JC, Atkinson T, Smith M, Pawson T (1984) Identification of functional regions in the transforming protein of Fujinami sarcoma virus by in-phase insertion mutagenesis. Cell 37(2):549–558

    Article  CAS  PubMed  Google Scholar 

  5. Mayer BJ, Hamaguchi M, Hanafusa H (1988) A novel viral oncogene with structural similarity to phospholipase C. Nature 332(6161):272–275. doi:10.1038/332272a0

    Article  CAS  PubMed  Google Scholar 

  6. Matsuda M, Mayer BJ, Fukui Y, Hanafusa H (1990) Binding of transforming protein, P47gag-crk, to a broad range of phosphotyrosine-containing proteins. Science 248(4962):1537–1539

    Article  CAS  PubMed  Google Scholar 

  7. Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, Pawson T (1993) A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73(1):179–191

    Article  CAS  PubMed  Google Scholar 

  8. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D (1993) The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363(6424):83–85. doi:10.1038/363083a0

    Article  CAS  PubMed  Google Scholar 

  9. Anderson D, Koch CA, Grey L, Ellis C, Moran MF, Pawson T (1990) Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science 250(4983):979–982

    Article  CAS  PubMed  Google Scholar 

  10. Moran MF, Koch CA, Anderson D, Ellis C, England L, Martin GS, Pawson T (1990) Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci U S A 87(21):8622–8626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mohammadi M, Honegger AM, Rotin D, Fischer R, Bellot F, Li W, Dionne CA, Jaye M, Rubinstein M, Schlessinger J (1991) A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol Cell Biol 11(10):5068–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu BA, Jablonowski K, Raina M, Arce M, Pawson T, Nash PD (2006) The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 22(6):851–868. doi:10.1016/j.molcel.2006.06.001

    Article  PubMed  CAS  Google Scholar 

  13. Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD (2011) The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci Signal 4(202):83. doi:10.1126/scisignal.2002105

    Article  CAS  Google Scholar 

  14. King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451(7180):783–788. doi:10.1038/nature06617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manning G, Young SL, Miller WT, Zhai Y (2008) The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci U S A 105(28):9674–9679. doi:10.1073/pnas.0801314105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lim WA, Pawson T (2010) Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142(5):661–667. doi:10.1016/j.cell.2010.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Waksman G, Kominos D, Robertson SC, Pant N, Baltimore D, Birge RB, Cowburn D, Hanafusa H, Mayer BJ, Overduin M et al (1992) Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358(6388):646–653. doi:10.1038/358646a0

    Article  CAS  PubMed  Google Scholar 

  18. Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J (1993) Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72(5):779–790, doi:0092-8674(93)90405-F [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Johnson LN, Noble ME, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85(2):149–158

    Article  CAS  PubMed  Google Scholar 

  20. Hidaka M, Homma Y, Takenawa T (1991) Highly conserved eight amino acid sequence in SH2 is important for recognition of phosphotyrosine site. Biochem Biophys Res Commun 180(3):1490–1497

    Article  CAS  PubMed  Google Scholar 

  21. Pawson T, Gish GD, Nash P (2001) SH2 domains, interaction modules and cellular wiring. Trends Cell Biol 11(12):504–511, doi:S0962-8924(01)02154-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72(5):767–778, doi:0092-8674(93)90404-E [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Pawson T (1995) Protein modules and signalling networks. Nature 373(6515):573–580. doi:10.1038/373573a0

    Article  CAS  PubMed  Google Scholar 

  24. Marengere LE, Songyang Z, Gish GD, Schaller MD, Parsons JT, Stern MJ, Cantley LC, Pawson T (1994) SH2 domain specificity and activity modified by a single residue. Nature 369(6480):502–505. doi:10.1038/369502a0

    Article  CAS  PubMed  Google Scholar 

  25. Panayotou G, Ladbury J (2001) Analysis of SH2 domain—phosphopeptide interactions by isothermal titration calorimetry and surface plasmon resonance. Methods Mol Biol 124:295–311

    CAS  PubMed  Google Scholar 

  26. Vely F, Trautmann A, Vivier E (2000) BIAcore analysis to test phosphopeptide-SH2 domain interactions. Methods Mol Biol 121:313–321. doi:10.1385/1-59259-044-6:313

    CAS  PubMed  Google Scholar 

  27. Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191–203, doi:S0092867403010778 [pii]

    Article  CAS  PubMed  Google Scholar 

  28. Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T et al (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol 14(4):2777–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports—principles and applications. J Immunol Methods 267(1):13–26, doi:S0022175902001370 [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Huang H, Li L, Wu C, Schibli D, Colwill K, Ma S, Li C, Roy P, Ho K, Songyang Z, Pawson T, Gao Y, Li SS (2008) Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics 7(4):768–784. doi:10.1074/mcp.M700312-MCP200

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez M, Li SS, Harper JW, Songyang Z (2004) An oriented peptide array library (OPAL) strategy to study protein-protein interactions. J Biol Chem 279(10):8802–8807. doi:10.1074/jbc.M311886200, M311886200 [pii]

    Article  CAS  PubMed  Google Scholar 

  32. Liu BA, Jablonowski K, Shah EE, Engelmann BW, Jones RB, Nash PD (2010) SH2 domains recognize contextual peptide sequence information to determine selectivity. Mol Cell Proteomics 9(11):2391–2404. doi:10.1074/mcp.M110.001586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Engelmann BW, Kim Y, Wang M, Peters B, Rock RS, Nash PD (2014) The development and application of a quantitative peptide microarray based approach to protein interaction domain specificity space. Mol Cell Proteomics 13(12):3647–3662. doi:10.1074/mcp.O114.038695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dente L, Vetriani C, Zucconi A, Pelicci G, Lanfrancone L, Pelicci PG, Cesareni G (1997) Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides. J Mol Biol 269(5):694–703

    Article  CAS  PubMed  Google Scholar 

  35. Leung KK, Hause RJ Jr, Barkinge JL, Ciaccio MF, Chuu CP, Jones RB (2014) Enhanced prediction of Src homology 2 (SH2) domain binding potentials using a fluorescence polarization-derived c-Met, c-Kit, ErbB, and androgen receptor interactome. Mol Cell Proteomics 13(7):1705–1723. doi:10.1074/mcp.M113.034876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hause RJ Jr, Leung KK, Barkinge JL, Ciaccio MF, Chuu CP, Jones RB (2012) Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors. PLoS One 7(9), e44471. doi:10.1371/journal.pone.0044471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439(7073):168–174. doi:10.1038/nature04177, nature04177 [pii]

    Article  CAS  PubMed  Google Scholar 

  38. Bae JH, Lew ED, Yuzawa S, Tome F, Lax I, Schlessinger J (2009) The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Cell 138(3):514–524. doi:10.1016/j.cell.2009.05.028, S0092-8674(09)00631-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park MJ, Sheng R, Silkov A, Jung DJ, Wang ZG, Xin Y, Kim H, Thiagarajan-Rosenkranz P, Song S, Yoon Y, Nam W, Kim I, Kim E, Lee DG, Chen Y, Singaram I, Wang L, Jang MH, Hwang CS, Honig B, Ryu S, Lorieau J, Kim YM, Cho W (2016) SH2 domains serve as lipid-binding modules for pTyr-signaling proteins. Mol Cell 62(1):7–20. doi:10.1016/j.molcel.2016.01.027

    Article  CAS  PubMed  Google Scholar 

  40. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31(13):3635–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li L, Wu C, Huang H, Zhang K, Gan J, Li SS (2008) Prediction of phosphotyrosine signaling networks using a scoring matrix-assisted ligand identification approach. Nucleic Acids Res 36(10):3263–3273. doi:10.1093/nar/gkn161, gkn161 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kundu K, Costa F, Huber M, Reth M, Backofen R (2013) Semi-supervised prediction of SH2-peptide interactions from imbalanced high-throughput data. PLoS One 8(5), e62732. doi:10.1371/journal.pone.0062732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu BA, Nash PD (2012) Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci 367(1602):2556–2573. doi:10.1098/rstb.2012.0107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648. doi:10.1016/j.cell.2006.09.026, S0092-8674(06)01274-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  45. Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8(11):R250. doi:10.1186/gb-2007-8-11-r250, gb-2007-8-11-r250 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B (2004) PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4(6):1551–1561. doi:10.1002/pmic.200300772

    Article  CAS  PubMed  Google Scholar 

  47. Diella F, Cameron S, Gemund C, Linding R, Via A, Kuster B, Sicheritz-Ponten T, Blom N, Gibson TJ (2004) Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics 5:79. doi:10.1186/1471-2105-5-79 1471-2105-5-79 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  48. Diella F, Gould CM, Chica C, Via A, Gibson TJ (2008) Phospho.ELM a database of phosphorylation sites—update. Nucleic Acids Res 36(Database issue):D240–D244. doi:10.1093/nar/gkm772, gkm772 [pii]

    CAS  PubMed  Google Scholar 

  49. Matlock MK, Holehouse AS, Naegle KM (2015) ProteomeScout: a repository and analysis resource for post-translational modifications and proteins. Nucleic Acids Res 43(Database issue):D521–D530. doi:10.1093/nar/gku1154

    Article  PubMed  Google Scholar 

  50. Wang Y, Klemke RL (2008) PhosphoBlast, a computational tool for comparing phosphoprotein signatures among large datasets. Mol Cell Proteomics 7(1):145–162. doi:10.1074/mcp.M700207-MCP200, M700207-MCP200 [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Linding R, Jensen LJ, Pasculescu A, Olhovsky M, Colwill K, Bork P, Yaffe MB, Pawson T (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 36(Database issue):D695–D699. doi:10.1093/nar/gkm902, gkm902 [pii]

    CAS  PubMed  Google Scholar 

  52. Miller ML, Jensen LJ, Diella F, Jorgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T, Olhovsky M, Pasculescu A, Alexander J, Knapp S, Blom N, Bork P, Li S, Cesareni G, Pawson T, Turk BE, Yaffe MB, Brunak S, Linding R (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1(35):ra2. doi:10.1126/scisignal.1159433, 1/35/ra2 [pii]

    Article  PubMed  CAS  Google Scholar 

  53. AlQuraishi M, Koytiger G, Jenney A, MacBeath G, Sorger PK (2014) A multiscale statistical mechanical framework integrates biophysical and genomic data to assemble cancer networks. Nat Genet 46(12):1363–1371. doi:10.1038/ng.3138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Creixell P, Schoof EM, Simpson CD, Longden J, Miller CJ, Lou HJ, Perryman L, Cox TR, Zivanovic N, Palmeri A, Wesolowska-Andersen A, Helmer-Citterich M, Ferkinghoff-Borg J, Itamochi H, Bodenmiller B, Erler JT, Turk BE, Linding R (2015) Kinome-wide decoding of network-attacking mutations rewiring cancer signaling. Cell 163(1):202–217. doi:10.1016/j.cell.2015.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaushansky A, Allen JE, Gordus A, Stiffler MA, Karp ES, Chang BH, MacBeath G (2010) Quantifying protein-protein interactions in high throughput using protein domain microarrays. Nat Protoc 5(4):773–790. doi:10.1038/nprot.2010.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaushansky A, Gordus A, Chang B, Rush J, MacBeath G (2008) A quantitative study of the recruitment potential of all intracellular tyrosine residues on EGFR, FGFR1 and IGF1R. Mol Biosyst 4(6):643–653. doi:10.1039/b801018h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tinti M, Kiemer L, Costa S, Miller ML, Sacco F, Olsen JV, Carducci M, Paoluzi S, Langone F, Workman CT, Blom N, Machida K, Thompson CM, Schutkowski M, Brunak S, Mann M, Mayer BJ, Castagnoli L, Cesareni G (2013) The SH2 domain interaction landscape. Cell Rep 3(4):1293–1305. doi:10.1016/j.celrep.2013.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu BA, Engelmann BW, Jablonowski K, Higginbotham K, Stergachis AB, Nash PD (2012) SRC homology 2 domain binding sites in insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome. Cell Commun Signal 10(1):27. doi:10.1186/1478-811X-10-27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33(9):990–995. doi:10.1038/nbt.3327

    Article  CAS  PubMed  Google Scholar 

  60. Curran TG, Zhang Y, Ma DJ, Sarkaria JN, White FM (2015) MARQUIS: a multiplex method for absolute quantification of peptides and posttranslational modifications. Nat Commun 6:5924. doi:10.1038/ncomms6924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Liu H, Li L, Voss C, Wang F, Liu J, Li SS (2015) A comprehensive immunoreceptor phosphotyrosine-based signaling network revealed by reciprocal protein-peptide array screening. Mol Cell Proteomics 14(7):1846–1858. doi:10.1074/mcp.M115.047951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mayer BJ (2015) The discovery of modular binding domains: building blocks of cell signalling. Nat Rev Mol Cell Biol 16(11):691–698. doi:10.1038/nrm4068

    Article  CAS  PubMed  Google Scholar 

  63. Mayer BJ (2012) Perspective: dynamics of receptor tyrosine kinase signaling complexes. FEBS Lett 586(17):2575–2579. doi:10.1016/j.febslet.2012.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jadwin JA, Oh D, Curran TG, Ogiue-Ikeda M, Jia L, White FM, Machida K, Yu J, Mayer BJ (2016) Time-resolved multimodal analysis of Src Homology 2 (SH2) domain binding in signaling by receptor tyrosine kinases. Elife 5, e11835. doi:10.7554/eLife.11835

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kaneko T, Huang H, Cao X, Li X, Li C, Voss C, Sidhu SS, Li SS (2012) Superbinder SH2 domains act as antagonists of cell signaling. Sci Signal 5243:68. doi:10.1126/scisignal.2003021

    Google Scholar 

  66. Findlay GM, Smith MJ, Lanner F, Hsiung MS, Gish GD, Petsalaki E, Cockburn K, Kaneko T, Huang H, Bagshaw RD, Ketela T, Tucholska M, Taylor L, Bowtell DD, Moffat J, Ikura M, Li SS, Sidhu SS, Rossant J, Pawson T (2013) Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Cell 152(5):1008–1020. doi:10.1016/j.cell.2013.01.056

    Article  CAS  PubMed  Google Scholar 

  67. Wojcik J, Hantschel O, Grebien F, Kaupe I, Bennett KL, Barkinge J, Jones RB, Koide A, Superti-Furga G, Koide S (2010) A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Nat Struct Mol Biol 17(4):519–527. doi:10.1038/nsmb.1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sha F, Gencer EB, Georgeon S, Koide A, Yasui N, Koide S, Hantschel O (2013) Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. Proc Natl Acad Sci U S A 110(37):14924–14929. doi:10.1073/pnas.1303640110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yasui N, Findlay GM, Gish GD, Hsiung MS, Huang J, Tucholska M, Taylor L, Smith L, Boldridge WC, Koide A, Pawson T, Koide S (2014) Directed network wiring identifies a key protein interaction in embryonic stem cell differentiation. Mol Cell 54(6):1034–1041. doi:10.1016/j.molcel.2014.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lappalainen I, Thusberg J, Shen B, Vihinen M (2008) Genome wide analysis of pathogenic SH2 domain mutations. Proteins 72(2):779–792. doi:10.1002/prot.21970

    Article  CAS  PubMed  Google Scholar 

  71. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA (2011) COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 39(Database issue):D945–D950. doi:10.1093/nar/gkq929

    Article  CAS  PubMed  Google Scholar 

  72. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120. doi:10.1038/ng.2764

    Article  PubMed  CAS  Google Scholar 

  73. Muller PJ, Rigbolt KT, Paterok D, Piehler J, Vanselow J, Lasonder E, Andersen JS, Schaper F, Sobota RM (2013) Protein tyrosine phosphatase SHP2/PTPN11 mistargeting as a consequence of SH2-domain point mutations associated with Noonan Syndrome and leukemia. J Proteomics 84:132–147. doi:10.1016/j.jprot.2013.04.005

    Article  PubMed  CAS  Google Scholar 

  74. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA, Investigators I (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417. doi:10.1056/NEJMoa062867

    Article  CAS  PubMed  Google Scholar 

  75. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, Grant B, Sharman JP, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA, Johnson AJ, Sukbuntherng J, Chang BY, Clow F, Hedrick E, Buggy JJ, James DF, O'Brien S (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369(1):32–42. doi:10.1056/NEJMoa1215637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Machida K, Khenkhar M, Nollau P (2012) Deciphering phosphotyrosine-dependent signaling networks in cancer by SH2 profiling. Genes Cancer 3(5-6):353–361. doi:10.1177/1947601912459048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Machida K, Thompson CM, Dierck K, Jablonowski K, Karkkainen S, Liu B, Zhang H, Nash PD, Newman DK, Nollau P, Pawson T, Renkema GH, Saksela K, Schiller MR, Shin DG, Mayer BJ (2007) High-throughput phosphotyrosine profiling using SH2 domains. Mol Cell 26(6):899–915. doi:10.1016/j.molcel.2007.05.031

    Article  CAS  PubMed  Google Scholar 

  78. Takakuma K, Ogo N, Uehara Y, Takahashi S, Miyoshi N, Asai A (2013) Novel multiplexed assay for identifying SH2 domain antagonists of STAT family proteins. PLoS One 8(8), e71646. doi:10.1371/journal.pone.0071646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Machida K, Mayer BJ (2005) The SH2 domain: versatile signaling module and pharmaceutical target. Biochim Biophys Acta 1747(1):1–25. doi:10.1016/j.bbapap.2004.10.005

    Article  CAS  PubMed  Google Scholar 

  80. Watson GM, Gunzburg MJ, Ambaye ND, Lucas WA, Traore DA, Kulkarni K, Cergol KM, Payne RJ, Panjikar S, Pero SC, Perlmutter P, Wilce MC, Wilce JA (2015) Cyclic peptides incorporating phosphotyrosine mimetics as potent and specific inhibitors of the Grb7 breast cancer target. J Med Chem 58(19):7707–7718. doi:10.1021/acs.jmedchem.5b00609

    Article  CAS  PubMed  Google Scholar 

  81. Iwata T, Tanaka K, Tahara T, Nozaki S, Onoe H, Watanabe Y, Fukase K (2013) A conformationally fixed analog of the peptide mimic Grb2-SH2 domain: synthesis and evaluation against the A431 cancer cell. Mol Biosyst 9(5):1019–1025. doi:10.1039/c3mb25462c

    Article  CAS  PubMed  Google Scholar 

  82. Wojcik J, Lamontanara AJ, Grabe G, Koide A, Akin L, Gerig B, Hantschel O, Koide S (2016) Allosteric inhibition of Bcr-Abl kinase by high-affinity monobody inhibitors directed to the SH2-kinase interface. J Biol Chem. doi:10.1074/jbc.M115.707901

    PubMed  Google Scholar 

  83. Grebien F, Hantschel O, Wojcik J, Kaupe I, Kovacic B, Wyrzucki AM, Gish GD, Cerny-Reiterer S, Koide A, Beug H, Pawson T, Valent P, Koide S, Superti-Furga G (2011) Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Cell 147(2):306–319. doi:10.1016/j.cell.2011.08.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Songyang Z, Cantley LC (1995) Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci 20(11):470–475

    Article  CAS  PubMed  Google Scholar 

  85. Kabak S, Skaggs BJ, Gold MR, Affolter M, West KL, Foster MS, Siemasko K, Chan AC, Aebersold R, Clark MR (2002) The direct recruitment of BLNK to immunoglobulin alpha couples the B-cell antigen receptor to distal signaling pathways. Mol Cell Biol 22(8):2524–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lupher ML Jr, Songyang Z, Shoelson SE, Cantley LC, Band H (1997) The Cbl phosphotyrosine-binding domain selects a D(N/D)XpY motif and binds to the Tyr292 negative regulatory phosphorylation site of ZAP-70. J Biol Chem 272(52):33140–33144

    Article  CAS  PubMed  Google Scholar 

  87. Ng C, Jackson RA, Buschdorf JP, Sun Q, Guy GR, Sivaraman J (2008) Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates. EMBO J 27(5):804–816. doi:10.1038/emboj.2008.18, emboj200818 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Auger KR, Songyang Z, Lo SH, Roberts TM, Chen LB (1996) Platelet-derived growth factor-induced formation of tensin and phosphoinositide 3-kinase complexes. J Biol Chem 271(38):23452–23457

    Article  CAS  PubMed  Google Scholar 

  89. Bunnell SC, Diehn M, Yaffe MB, Findell PR, Cantley LC, Berg LJ (2000) Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J Biol Chem 275(3):2219–2230

    Article  CAS  PubMed  Google Scholar 

  90. Jones N, Blasutig IM, Eremina V, Ruston JM, Bladt F, Li H, Huang H, Larose L, Li SS, Takano T, Quaggin SE, Pawson T (2006) Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 440(7085):818–823

    Article  CAS  PubMed  Google Scholar 

  91. Beebe KD, Wang P, Arabaci G, Pei D (2000) Determination of the binding specificity of the SH2 domains of protein tyrosine phosphatase SHP-1 through the screening of a combinatorial phosphotyrosyl peptide library. Biochemistry 39(43):13251–13260

    Article  CAS  PubMed  Google Scholar 

  92. Sweeney MC, Wavreille AS, Park J, Butchar JP, Tridandapani S, Pei D (2005) Decoding protein-protein interactions through combinatorial chemistry: sequence specificity of SHP-1, SHP-2, and SHIP SH2 domains. Biochemistry 44(45):14932–14947

    Article  CAS  PubMed  Google Scholar 

  93. Holland SJ, Gale NW, Gish GD, Roth RA, Songyang Z, Cantley LC, Henkemeyer M, Yancopoulos GD, Pawson T (1997) Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J 16(13):3877–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Poy F, Yaffe MB, Sayos J, Saxena K, Morra M, Sumegi J, Cantley LC, Terhorst C, Eck MJ (1999) Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol Cell 4(4):555–561

    Article  CAS  PubMed  Google Scholar 

  95. Hwang PM, Li C, Morra M, Lillywhite J, Muhandiram DR, Gertler F, Terhorst C, Kay LE, Pawson T, Forman-Kay JD, Li SC (2002) A “three-pronged” binding mechanism for the SAP/SH2D1A SH2 domain: structural basis and relevance to the XLP syndrome. EMBO J 21(3):314–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Karlsson T, Songyang Z, Landgren E, Lavergne C, Di Fiore PP, Anafi M, Pawson T, Cantley LC, Claesson-Welsh L, Welsh M (1995) Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene 10(8):1475–1483

    CAS  PubMed  Google Scholar 

  97. O'Bryan JP, Martin CB, Songyang Z, Cantley LC, Der CJ (1996) Binding specificity and mutational analysis of the phosphotyrosine binding domain of the brain-specific adaptor protein ShcC. J Biol Chem 271(20):11787–11791

    Article  PubMed  Google Scholar 

  98. Bullock AN, Rodriguez MC, Debreczeni JE, Songyang Z, Knapp S (2007) Structure of the SOCS4-ElonginB/C complex reveals a distinct SOCS box interface and the molecular basis for SOCS-dependent EGFR degradation. Structure 15(11):1493–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. De Souza D, Fabri LJ, Nash A, Hilton DJ, Nicola NA, Baca M (2002) SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatase SHP-2 have similar binding specificities. Biochemistry 41(29):9229–9236

    Article  PubMed  CAS  Google Scholar 

  100. Krebs DL, Uren RT, Metcalf D, Rakar S, Zhang JG, Starr R, De Souza DP, Hanzinikolas K, Eyles J, Connolly LM, Simpson RJ, Nicola NA, Nicholson SE, Baca M, Hilton DJ, Alexander WS (2002) SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol 22(13):4567–4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wiederkehr-Adam M, Ernst P, Muller K, Bieck E, Gombert FO, Ottl J, Graff P, Grossmuller F, Heim MH (2003) Characterization of phosphopeptide motifs specific for the Src homology 2 domains of signal transducer and activator of transcription 1 (STAT1) and STAT3. J Biol Chem 278(18):16117–16128

    Article  CAS  PubMed  Google Scholar 

  102. Stahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE Jr, Yancopoulos GD (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267(5202):1349–1353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are incredibly grateful to all the authors who contributed to this volume. We thank the series editor, John Walker, for his continuous encouragement and providing constructive comments. We also thank Joshua Jadwin, Piers Nash, and Bruce Mayer for their support. Finally, we would like to extend our thanks to David Casey and Anna Rakovsky of Springer USA, and L. Sujitha of Spi Global for their help in the compilation of this book. This study was partly supported by grant CA1154966 from the National Institutes of Health and Quest for CURES (QFC) grant from the Leukemia and Lymphoma Society (to K.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernard A. Liu or Kazuya Machida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, B.A., Machida, K. (2017). Introduction: History of SH2 Domains and Their Applications. In: Machida, K., Liu, B. (eds) SH2 Domains. Methods in Molecular Biology, vol 1555. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6762-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6762-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6760-5

  • Online ISBN: 978-1-4939-6762-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics