Skip to main content

Cancer Nanotechnology: Opportunities for Prevention, Diagnosis, and Therapy

  • Protocol
  • First Online:
Cancer Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1530))

Abstract

Nanotechnological innovations over the last 16 years have brought about the potential to revolutionize specific therapeutic drug delivery to cancer tissue without affecting normal tissues. In addition, there are new nanotechnology-based platforms for diagnosis of cancers and for theranostics, i.e., integrating diagnosis with therapy and follow-up of effectiveness of therapy. This chapter presents an overview of these nanotechnology-based advancements in the areas of prevention, diagnosis, therapy, and theranostics for cancer. In addition, we stress the need to educate bio- and medical students in the field of nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine (second of two parts). N Engl J Med 295(14):765–770

    Article  CAS  PubMed  Google Scholar 

  2. Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine (first of two parts). N Engl J Med 295(13):704–710

    Article  CAS  PubMed  Google Scholar 

  3. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polymer Sci Polymer Symp 51:135–153

    Article  CAS  Google Scholar 

  4. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fenske DB, Chonn A, Cullis PR (2008) Liposomal nanomedicines: an emerging field. Toxicol Pathol 36(1):21–29

    Article  CAS  PubMed  Google Scholar 

  6. Ryan SM, Mantovani G, Wang X, Haddleton DM, Brayden DJ (2008) Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv 5(4):371–383

    Article  CAS  PubMed  Google Scholar 

  7. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  CAS  PubMed  Google Scholar 

  8. Allen C, Dos Santos N, Gallagher R, Chiu GN, Shu Y, Li WM, Johnstone SA, Janoff AS, Mayer LD, Webb MS, Bally MB (2002) Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep 22(2):225–250

    Article  CAS  PubMed  Google Scholar 

  9. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662

    Article  CAS  PubMed  Google Scholar 

  10. Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60(8):876–885

    Article  CAS  PubMed  Google Scholar 

  11. Matsumura Y (2008) Polymeric micellar delivery systems in oncology. Jpn J Clin Oncol 38(12):793–802

    Article  PubMed  Google Scholar 

  12. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60(15):1638–1649

    Article  CAS  PubMed  Google Scholar 

  13. Kesharwani P, Iyer AK (2015) Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 20(5):536–547. doi:10.1016/j.drudis.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  14. Villalonga-Barber C, Micha-Screttas M, Steele BR, Georgopoulos A, Demetzos C (2008) Dendrimers as biopharmaceuticals: synthesis and properties. Curr Top Med Chem 8(14):1294–1309

    Article  CAS  PubMed  Google Scholar 

  15. Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, Derakhshani Z (2015) Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 22(2):145–155. doi:10.3109/10717544.2014.887157

    Article  CAS  PubMed  Google Scholar 

  16. He C, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 127(3):189–207

    Article  CAS  PubMed  Google Scholar 

  17. Cattaneo R, Miest T, Shashkova EV, Barry MA (2008) Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol 6(7):529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Rijn P, Schirhagl R (2016) Viruses, artificial viruses and virus-based structures for biomedical applications. Adv Healthc Mater 5:1386–1400. doi:10.1002/adhm.201501000

    Article  PubMed  Google Scholar 

  19. Vallet-Regi M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed Engl 46(40):7548–7558

    Article  CAS  PubMed  Google Scholar 

  20. Murakami T, Tsuchida K (2008) Recent advances in inorganic nanoparticle-based drug delivery systems. Mini Rev Med Chem 8(2):175–183

    Article  CAS  PubMed  Google Scholar 

  21. Misra RD (2008) Quantum dots for tumor-targeted drug delivery and cell imaging. Nanomedicine (Lond) 3(3):271–274

    Article  CAS  Google Scholar 

  22. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    Article  CAS  PubMed  Google Scholar 

  23. Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A (2015) Magnetic nanoparticles in cancer theranostics. Theranostics 5(11):1249–1263. doi:10.7150/thno.11544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang R, Wei M, Evans DG, Duan X (2014) Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem Commun (Camb) 50(91):14071–14081. doi:10.1039/c4cc03118k

    Article  CAS  Google Scholar 

  25. Probst CE, Zrazhevskiy P, Bagalkot V, Gao X (2013) Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 65(5):703–718. doi:10.1016/j.addr.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  26. Sao R, Vaish R, Sinha N (2015) Multifunctional drug delivery systems using inorganic nanomaterials: a review. J Nanosci Nanotechnol 15(3):1960–1972

    Article  CAS  PubMed  Google Scholar 

  27. Rossi M, Pina CD, Falletta E (2016) Gold nanomaterials: from preparation to pharmaceutical design and application. Curr Pharm Des 22(11):1485–1493

    Article  CAS  PubMed  Google Scholar 

  28. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2(4):639–649

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pastorin G (2009) Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharm Res 26:746–769

    Article  CAS  PubMed  Google Scholar 

  30. Chakrabarti M, Kiseleva R, Vertegel A, Ray SK (2015) Carbon nanomaterials for drug delivery and cancer therapy. J Nanosci Nanotechnol 15(8):5501–5511

    Article  CAS  PubMed  Google Scholar 

  31. Vicent MJ, Dieudonne L, Carbajo RJ, Pineda-Lucena A (2008) Polymer conjugates as therapeutics: future trends, challenges and opportunities. Expert Opin Drug Deliv 5(5):593–614

    Article  CAS  PubMed  Google Scholar 

  32. Martins S, Sarmento B, Ferreira DC, Souto EB (2007) Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int J Nanomedicine 2(4):595–607

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagahama K, Ouchi T, Ohya Y (2008) Biodegradable nanogels prepared by self-assembly of poly(L-lactide)-grafted dextran: entrapment and release of proteins. Macromol Biosci 8(11):1044–1052

    Article  CAS  PubMed  Google Scholar 

  34. Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2(6):789–803. doi:10.2217/17435889.2.6.789

    Article  CAS  Google Scholar 

  35. Moon JJ, Huang B, Irvine DJ (2012) Engineering nano- and microparticles to tune immunity. Adv Mater 24(28):3724–3746. doi:10.1002/adma.201200446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zeineldin R (2013) Nanotechnology for cancer screening and diagnosis. In: Park K (ed) Biomaterials for cancer therapeutics: diagnosis, prevention and therapy. Woodhead Publishing Limited Philadelphia, PA, pp 137–164

    Chapter  Google Scholar 

  37. Kim PS, Djazayeri S, Zeineldin R (2011) Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecol Oncol 120(3):393–403. doi:10.1016/j.ygyno.2010.11.029

    Article  PubMed  Google Scholar 

  38. Chemburu S, Fenton K, Lopez GP, Zeineldin R (2010) Biomimetic silica microspheres in biosensing. Molecules 15(3):1932–1957

    Article  CAS  PubMed  Google Scholar 

  39. Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41(7):2885–2911

    Article  CAS  PubMed  Google Scholar 

  40. Chu E, Sartorelli A (2012) Cancer chemotherapy. In: Katzung B (ed) Basic and clinical pharmacology, 13th edn. Lange Medical Publications, Los Altos, CA, pp 918–945

    Google Scholar 

  41. Le Tourneau C, Faivre S, Raymond E (2008) New developments in multitargeted therapy for patients with solid tumours. Cancer Treat Rev 34(1):37–48

    Article  PubMed  Google Scholar 

  42. Rosato RR, Grant S (2003) Histone deacetylase inhibitors in cancer therapy. Cancer Biol Ther 2(1):30–37

    Article  PubMed  Google Scholar 

  43. Sivashankari PR, Prabaharan M (2015) Peptides to target tumor vasculature and lymphatics for improved anti-angiogenesis therapy. Curr Cancer Drug Targets 16:522–535

    Article  Google Scholar 

  44. Manfredi GI, Dicitore A, Gaudenzi G, Caraglia M, Persani L, Vitale G (2015) PI3K/Akt/mTOR signaling in medullary thyroid cancer: a promising molecular target for cancer therapy. Endocrine 48(2):363–370. doi:10.1007/s12020-014-0380-1

    Article  CAS  PubMed  Google Scholar 

  45. Takara K, Sakaeda T, Okumura K (2006) An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des 12(3):273–286

    Article  CAS  PubMed  Google Scholar 

  46. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  PubMed  Google Scholar 

  47. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  CAS  PubMed  Google Scholar 

  48. Witkop B (1999) Paul Ehrlich and his magic bullets--revisited. Proc Am Philos Soc 143(4):540–557

    CAS  PubMed  Google Scholar 

  49. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41(2):147–162

    Article  CAS  PubMed  Google Scholar 

  50. Robak T (2006) Current treatment options in hairy cell leukemia and hairy cell leukemia variant. Cancer Treat Rev 32(5):365–376

    Article  CAS  PubMed  Google Scholar 

  51. Uberall I, Kolar Z, Trojanec R, Berkovcova J, Hajduch M (2008) The status and role of ErbB receptors in human cancer. Exp Mol Pathol 84(2):79–89

    Article  CAS  PubMed  Google Scholar 

  52. Mizejewski GJ (1999) Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med 222(2):124–138

    Article  CAS  PubMed  Google Scholar 

  53. Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28(10):1703–1713

    Article  CAS  PubMed  Google Scholar 

  54. Sato M, Arap W, Pasqualini R (2007) Molecular targets on blood vessels for cancer therapies in clinical trials. Oncology (Williston Park) 21(11):1346–1352, discussion 1354–1345, 1367, 1370 passim

    Google Scholar 

  55. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3(5):703–717

    Article  CAS  Google Scholar 

  56. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138

    Article  CAS  PubMed  Google Scholar 

  57. Tiram G, Scomparin A, Ofek P, Satchi-Fainaro R (2014) Interfering cancer with polymeric siRNA nanomedicines. J Biomed Nanotechnol 10(1):50–66

    Article  CAS  PubMed  Google Scholar 

  58. Jhaveri AM, Torchilin VP (2014) Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 5:77. doi:10.3389/fphar.2014.00077

    Article  PubMed  PubMed Central  Google Scholar 

  59. Young SW, Stenzel M, Jia-Lin Y (2016) Nanoparticle-siRNA: a potential cancer therapy? Crit Rev Oncol Hematol 98:159–169. doi:10.1016/j.critrevonc.2015.10.015

    Article  PubMed  Google Scholar 

  60. West KR, Otto S (2005) Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol 2(3):123–160

    Article  CAS  PubMed  Google Scholar 

  61. Bikram M, West JL (2008) Thermo-responsive systems for controlled drug delivery. Expert Opin Drug Deliv 5(10):1077–1091

    Article  CAS  PubMed  Google Scholar 

  62. Huang SL (2008) Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60(10):1167–1176

    Article  CAS  PubMed  Google Scholar 

  63. Jensen SS, Andresen TL, Davidsen J, Hoyrup P, Shnyder SD, Bibby MC, Gill JH, Jorgensen K (2004) Secretory phospholipase A2 as a tumor-specific trigger for targeted delivery of a novel class of liposomal prodrug anticancer etherlipids. Mol Cancer Ther 3(11):1451–1458

    CAS  PubMed  Google Scholar 

  64. Tauro JR, Gemeinhart RA (2005) Matrix metalloprotease triggered delivery of cancer chemotherapeutics from hydrogel matrixes. Bioconjug Chem 16(5):1133–1139

    Article  CAS  PubMed  Google Scholar 

  65. Brooks H, Lebleu B, Vives E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57(4):559–577

    Article  CAS  PubMed  Google Scholar 

  66. Torchilin VP (2008) Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 90(5):604–610

    Article  CAS  PubMed  Google Scholar 

  67. Yang S, May S (2008) Release of cationic polymer-DNA complexes from the endosome: a theoretical investigation of the proton sponge hypothesis. J Chem Phys 129(18):185105

    Article  PubMed  Google Scholar 

  68. Fogueri LR, Singh S (2009) Smart polymers for controlled delivery of proteins and peptides: a review of patents. Recent Pat Drug Deliv Formul 3(1):40–48

    Article  CAS  PubMed  Google Scholar 

  69. Pouton CW, Wagstaff KM, Roth DM, Moseley GW, Jans DA (2007) Targeted delivery to the nucleus. Adv Drug Deliv Rev 59(8):698–717

    Article  CAS  PubMed  Google Scholar 

  70. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141. doi:10.1021/mp200394t

    Article  CAS  PubMed  Google Scholar 

  71. Youkhanna J, Syoufjy J, Rhorer M, Oladeinde O, Zeineldin R (2013) Toward nanotechnology-based solutions for a particular disease: ovarian cancer as an example. Nanotechnol Rev 2(4):473–484

    Article  Google Scholar 

  72. http://www.nano.gov/education-training/university-college. Accessed April 2016

  73. http://nanoinstitute.utah.edu/education-outreach/grads/index.php. Accessed April 2016

  74. http://coes.latech.edu/grad-programs/msnt.php. Accessed April 2016

  75. http://www.rtuvt.edu//nanomedicine-requirements.php. Accessed April 2016

  76. http://www.igert.neu.edu/. Accessed April 2016

  77. http://www.emm-nano.org/. Accessed April 2016

  78. https://www.amrita.edu/program/m-tech-nanomedical-sciences. Accessed April 2016

  79. http://www.uam.es/ss/Satellite/es/1242684629435/1242662105880/masteroficial/masterOficia/Master_Universitario_en_Nanociencia_y_Nanotecnologia_Molecular.htm. April 2016

  80. http://www.u-bourgogne-formation.fr/-Nanotechnologies-et-h. Accessed April 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reema Zeineldin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zeineldin, R., Syoufjy, J. (2017). Cancer Nanotechnology: Opportunities for Prevention, Diagnosis, and Therapy. In: Zeineldin, R. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 1530. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6646-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6646-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6644-8

  • Online ISBN: 978-1-4939-6646-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics