Skip to main content

Evaluating the Stability of mRNAs and Noncoding RNAs

  • Protocol
  • First Online:
Enhancer RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1468))

Abstract

Changes in RNA stability have an important impact in the gene expression regulation. Different methods based on the transcription blockage with RNA polymerase inhibitors or metabolic labeling of newly synthesized RNAs have been developed to evaluate RNA decay rates in cultured cell. Combined with techniques to measure transcript abundance genome-wide, these methods have been used to reveal novel features of the eukaryotic transcriptome. The stability of protein-coding mRNAs is in general closely associated to the physiological function of their encoded proteins, with short-lived mRNAs being significantly enriched among regulatory genes whereas genes associated with housekeeping functions are predominantly stable. Likewise, the stability of noncoding RNAs (ncRNAs) seems to reflect their functional role in the cell. Thus, investigating RNA stability can provide insights regarding the function of yet uncharacterized regulatory ncRNAs. In this chapter, we discuss the methodologies currently used to estimate RNA decay and outline an experimental protocol for genome-wide estimation of RNA stability of protein-coding and lncRNAs. This protocol details the transcriptional blockage of cultured cells with actinomycin D, followed by RNA isolation at different time points, the determination of transcript abundance by qPCR/DNA oligoarray hybridization, and the calculation of individual transcript half-lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rabani M, Levin JZ, Fan L et al (2011) Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol 29(5):436–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharova LV, Sharov AA, Nedorezov T et al (2009) Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 16(1):45–58

    Article  CAS  PubMed  Google Scholar 

  3. Chen CY, Ezzeddine N, Shyu AB (2008) Messenger RNA half-life measurements in mammalian cells. Methods Enzymol 448:335–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ayupe AC, Tahira AC, Camargo L et al (2015) Global analysis of biogenesis, stability and sub-cellular localization of lncRNAs mapping to intragenic regions of the human genome. RNA Biol 12(8):877–892

    Article  PubMed  PubMed Central  Google Scholar 

  5. Clark MB, Johnston RL, Inostroza-Ponta M et al (2012) Genome-wide analysis of long noncoding RNA stability. Genome Res 22(5):885–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dolken L, Ruzsics Z, Radle B et al (2008) High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9):1959–1972

    Article  PubMed  PubMed Central  Google Scholar 

  7. Friedel CC, Dolken L, Ruzsics Z et al (2009) Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res 37(17):e115

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ideue T, Adachi S, Naganuma T et al (2012) U7 small nuclear ribonucleoprotein represses histone gene transcription in cell cycle-arrested cells. Proc Natl Acad Sci U S A 109(15):5693–5698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Redrup L, Branco MR, Perdeaux ER et al (2009) The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development 136(4):525–530, dev.031328 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwanhausser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. doi:10.1038/nature10098

    Article  PubMed  Google Scholar 

  11. Tani H, Mizutani R, Salam KA et al (2012) Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 22(5):947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beckedorff FC, Ayupe AC, Crocci-Souza R et al (2013) The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet 9(8):e1003705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. DeOcesano-Pereira C, Amaral MS, Parreira KS et al (2014) Long noncoding RNA INXS is a critical mediator of BCL-XS induced apoptosis. Nucleic Acids Res 42(13):8343–8355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tani H, Akimitsu N (2012) Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling. RNA Biol 9(10):1233–1238. doi:10.4161/rna.22036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bensaude O (2011) Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity? Transcription 2(3):103–108

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brueckner F, Cramer P (2008) Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 15(8):811–818

    Article  CAS  PubMed  Google Scholar 

  17. Kaplan CD, Larsson KM, Kornberg RD (2008) The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol Cell 30(5):547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weinmann R, Raskas HJ, Roeder RG (1974) Role of DNA-dependent RNA polymerases II and III in transcription of the adenovirus genome late in productive infection. Proc Natl Acad Sci U S A 71(9):3426–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raha D, Wang Z, Moqtaderi Z et al (2010) Close association of RNA polymerase II and many transcription factors with Pol III genes. Proc Natl Acad Sci U S A 107(8):3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nechaev S, Adelman K (2011) Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation. Biochim Biophys Acta 1809(1):34–45

    Article  CAS  PubMed  Google Scholar 

  21. Burger K, Muhl B, Harasim T et al (2012) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 285(16):12416–12425

    Article  Google Scholar 

  22. Lam LT, Pickeral OK, Peng AC et al (2001) Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol 2(10):RESEARCH0041

    Google Scholar 

  23. Raghavan A, Ogilvie RL, Reilly C et al (2002) Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res 30(24):5529–5538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang E, Van Nimwegen E, Zavolan M et al (2003) Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res 13(8):1863–1872, 13/8/1863 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Maekawa S, Imamachi N, Irie T et al (2015) Analysis of RNA decay factor mediated RNA stability contributions on RNA abundance. BMC Genomics 16:154

    Article  PubMed  PubMed Central  Google Scholar 

  26. St Laurent G, Wahlestedt C, Kapranov P (2015) The Landscape of long noncoding RNA classification. Trends Genet 31(5):239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Simon RM, Dobbin K (2003) Experimental design of DNA microarray experiments. Biotechniques Suppl:16–21

    Google Scholar 

  29. Munchel SE, Shultzaberger RK, Takizawa N, Weis K (2011) Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay. Mol Biol Cell 22(15):2787–2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo M. Reis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ayupe, A.C., Reis, E.M. (2017). Evaluating the Stability of mRNAs and Noncoding RNAs. In: Ørom, U. (eds) Enhancer RNAs. Methods in Molecular Biology, vol 1468. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4035-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4035-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4033-2

  • Online ISBN: 978-1-4939-4035-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics