Skip to main content

Three-Dimensional Architecture of Murine Rod Cilium Revealed by Cryo-EM

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1271))

Abstract

The connecting cilium of the rod photoreceptor is a tubular structure that bridges two adjacent cellular compartments, the inner segment, the major site of biosynthesis and energy metabolism, and the outer segment, a highly specialized ciliary structure responsible for phototransduction. The connecting cilium allows for active processes of protein sorting and transport to occur between them. Mutations affecting the cargo, their transporters, and the structural components of the primary cilium and basal body lead to aberrant trafficking and photoreceptor cell death. Understanding the overall design of the cilium, its architectural organization, and the function of varied protein complexes within the structural hierarchy of the cilium requires techniques for visualizing their native three-dimensional structures at high magnification. Here we describe methods for isolating retinas from mice, purifying fragments of rod cells that include much of the inner segment and the rod photoreceptor cilia, vitrifying the cell fragments, and determining their structures by cryo-electron tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang J, Deretic D (2014) Molecular complexes that direct rhodopsin transport to primary cilia. Prog Retin Eye Res 38:1–19

    Article  PubMed  Google Scholar 

  2. Young RW (1967) The renewal of photoreceptor cell outer segments. J Cell Biol 33:61–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Wensel TG (2012) Molecular biology of vision. In: Brady ST, Albers RW, Price D, Siegel JG (eds) Basic neurochemistry: principles of molecular, cellular, and medical neurobiology, 8th edn. Elsevier, London, pp 889–903

    Chapter  Google Scholar 

  4. Besharse JC, Horst CJ (1990) The photoreceptor connecting cilium. A model for the transition zone. In: Bloodgood RA (ed) Ciliary and flagellar membranes. Springer, New York, pp 389–417

    Chapter  Google Scholar 

  5. Kozminski KG, Johnson KA, Forscher P et al (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90:5519–5523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rosenbaum JL, Cole DG, Diener DR (1999) Intraflagellar transport: the eyes have it. J Cell Biol 144:385–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Nair KS, Hanson SM, Mendez A et al (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron 46:555–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gilliam JC, Chang JT, Sandoval IM et al (2012) Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. Cell 151:1029–1041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yahav T, Maimon T, Grossman E et al (2011) Cryo-electron tomography: gaining insight into cellular processes by structural approaches. Curr Opin Struct Biol 21:670–677

    Article  CAS  PubMed  Google Scholar 

  10. Dubochet J, Adrian M, Chang JJ et al (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    Article  CAS  PubMed  Google Scholar 

  11. Dierksen K, Typke D, Hegerl R et al (1992) Towards automatic electron tomography. Ultramicroscopy 40:71–87

    Article  Google Scholar 

  12. Dierksen K, Typke D, Hegerl R, Baumeister W (1993) Towards automatic electron tomography. II. Implementation of autofocus and low-dose procedures. Ultramicroscopy 49:109–120

    Article  Google Scholar 

  13. Frank J (1992) Electron tomography: three-dimensional imaging with the transmission electron microscope. Plenum, New York

    Book  Google Scholar 

  14. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  PubMed  Google Scholar 

  15. Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352

    Article  CAS  PubMed  Google Scholar 

  16. Grimm R, Singh H, Rachel R et al (1998) Electron tomography of ice-embedded prokaryotic cells. Biophys J 74:1031–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Grimm R, Typke D, Barmann M et al (1996) Determination of the inelastic mean free path in ice by examination of tilted vesicles and automated most probable loss imaging. Ultramicroscopy 63:169–179

    Article  CAS  PubMed  Google Scholar 

  18. Leis A, Rockel B, Andrees L et al (2009) Visualizing cells at the nanoscale. Trends Biochem Sci 34:60–70

    Article  CAS  PubMed  Google Scholar 

  19. Nickell S, Park PS, Baumeister W et al (2007) Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. J Cell Biol 177:917–925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nicastro D (2009) Cryo-electron microscope tomography to study axonemal organization. Methods Cell Biol 91:1–39

    Article  CAS  PubMed  Google Scholar 

  21. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    Article  PubMed  Google Scholar 

  22. Sandberg K, Mastronarde DN, Beylkin G (2003) A fast reconstruction algorithm for electron microscope tomography. J Struct Biol 144:61–72

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore G. Wensel Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wensel, T.G., Gilliam, J.C. (2015). Three-Dimensional Architecture of Murine Rod Cilium Revealed by Cryo-EM. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics