Skip to main content

Application of Artificial Neural Networks in Computer-Aided Diagnosis

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1260))

Abstract

Computer-aided diagnosis is a diagnostic procedure in which a radiologist uses the outputs of computer analysis of medical images as a second opinion in the interpretation of medical images, either to help with lesion detection or to help determine if the lesion is benign or malignant. Artificial neural networks (ANNs) are usually employed to formulate the statistical models for computer analysis. Receiver operating characteristic curves are used to evaluate the performance of the ANN alone, as well as the diagnostic performance of radiologists who take into account the ANN output as a second opinion. In this chapter, we use mammograms to illustrate how an ANN model is trained, tested, and evaluated, and how a radiologist should use the ANN output as a second opinion in CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eadie LH, Taylor P, Gibson AP (2012) A systematic review of computer-aided diagnosis in diagnostic cancer imaging. Eur J Radiol 81:e70–e76

    Article  PubMed  Google Scholar 

  2. Baker JA, Kornguth PJ, Lo JY et al (1996) Artificial neural network: improving the quality of breast biopsy recommendations. Radiology 198:131–135

    Article  CAS  PubMed  Google Scholar 

  3. Chan H, Sahiner B, Petrick N et al (1997) Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network. Phys Med Biol 42:549–567

    Article  CAS  PubMed  Google Scholar 

  4. Jiang Y, Nishikawa RM, Schmidt RA et al (1999) Improving breast cancer diagnosis with computer-aided diagnosis. Acad Radiol 6:22–33

    Article  CAS  PubMed  Google Scholar 

  5. Huo Z, Giger ML, Vyborny CJ et al (2002) Breast cancer: effectiveness of computer-aided diagnosis—observer study with independent database of mammograms. Radiology 224:560–568

    Article  PubMed  Google Scholar 

  6. Suzuki K, Li F, Sone S et al (2005) Computer-aided diagnosis scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 24:1138–1150

    Article  PubMed  Google Scholar 

  7. Richard HH, Lippman RP (1991) Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Comput 3:461–483

    Article  Google Scholar 

  8. Swingler K (1996) Applying neural networks: a practical guide. Academic, London

    Google Scholar 

  9. Berry MJA, Linoff G (1997) Data mining techniques. Wiley, New York

    Google Scholar 

  10. Rana RS, Jiang Y, Schmidt RA et al (2007) Independent evaluation of computer classification of malignant and benign calcifications in full-field digital mammograms. Acad Radiol 14:363–370

    Article  PubMed Central  PubMed  Google Scholar 

  11. Swets JA (1978) ROC analysis applied to the evaluation of medical imaging techniques. Invest Radiol 14:109–121

    Article  Google Scholar 

  12. Metz CE (1986) ROC methodology in radiologic imaging. Invest Radiol 21:720–733

    Article  CAS  PubMed  Google Scholar 

  13. Swets JA (1986) Forms of empirical ROCs in discrimination and diagnostic tasks: implication for theory and measurement of performance. Psychol Bull 99:181–198

    Article  CAS  PubMed  Google Scholar 

  14. Hanley JA (1988) The robustness of the binormal assumption used in fitting ROC curves. Med Decis Making 8:197–203

    Article  CAS  PubMed  Google Scholar 

  15. Veldkamp WJH, Karssemeijer N (1996) Influence of segmentation on classification of microcalcifications in digital mammography. IEEE engineering in medicine and biology society, bridging disciplines for biomedicine, proceedings of the 18th annual international conference of the IEEE 3, pp 1171–1172

    Google Scholar 

  16. Paquerault S, Yarusso LM, Papaioannou J et al (2004) Radial gradient-based segmentation of mammographic microcalcifications: observer evaluation and effect on CAD performance. Med Phys 31:2648–2657

    Article  PubMed  Google Scholar 

  17. Shi J, Sahiner B, Chan HP et al (2008) Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys 35(1):280–290

    Article  PubMed Central  PubMed  Google Scholar 

  18. Singh S, Maxwell J, Baker JA et al (2011) Computer-aided classification of breast masses: performance and interobserver variability of expert radiologists versus residents. Radiology 258:73–80

    Article  PubMed Central  PubMed  Google Scholar 

  19. Matignon R (2005) Neural network modeling using SAS enterprise miner. AuthorHouse, Bloomington

    Google Scholar 

  20. Way TW, Sahiner B, Hadjiiski LM et al (2010) Effect of finite sample size on feature selection and classification: a simulation study. Med Phys 37(2):907–920

    Article  PubMed Central  PubMed  Google Scholar 

  21. Rojas R, Feldman J (1996) Neural networks: a systematic introduction. Springer, New York

    Book  Google Scholar 

  22. Metz CE, Herman BA, Shen JH (1998) Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously distributed data. Stat Med 17:1033–1053

    Article  CAS  PubMed  Google Scholar 

  23. Salfity MF, Nishikawa RM, Jiang Y et al (2003) The use of priori information in the detection of mammographic microcalcifications to improve their classification. Med Phys 30:823–831

    Article  PubMed  Google Scholar 

  24. Rojas R (1996) A short proof of the posterior probability classifier neural networks. Neural Comput 8:41–43

    Article  Google Scholar 

  25. Liu B, Jiang Y (2013) A multitarget training method for artificial neural network with application to computer-aided diagnosis. Med Phys 40:011908. doi:10.1118/1.4772021

    Article  PubMed Central  PubMed  Google Scholar 

  26. Rosen PP (2001) Rosen’s breast pathology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  27. Jiang Y, Nishikawa RM, Wolverton DE et al (1996) Malignant and benign clustered microcalcifications: automated feature analysis and classification. Radiology 198:671–678

    Article  CAS  PubMed  Google Scholar 

  28. Chan H, Sahiner B, Lam KL et al (1998) Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces. Med Phys 25:2007–2019

    Article  CAS  PubMed  Google Scholar 

  29. Huo Z, Giger ML, Vyborny CJ (2001) Computerized analysis of multiple-mammographic views: potential usefulness of special view mammograms in computer-aided diagnosis. IEEE Trans Med Imaging 20:1285–1292

    Article  CAS  PubMed  Google Scholar 

  30. Metz CE, Shen J (1992) Gains in accuracy from replicated reading of diagnostic images: prediction and assessment in terms of ROC analysis. Med Decis Making 12:60–75

    Article  CAS  PubMed  Google Scholar 

  31. Liu B, Metz CE, Jiang Y (2004) An ROC comparison of four methods of combining information from multiple images of the same patient. Med Phys 31:2552–2563

    Article  PubMed  Google Scholar 

  32. Liu B, Metz CE, Jiang Y (2005) Effect of correlation on combining diagnostic information from two images of the same patient. Med Phys 32:3329–3338

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, B. (2015). Application of Artificial Neural Networks in Computer-Aided Diagnosis. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 1260. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2239-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2239-0_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2238-3

  • Online ISBN: 978-1-4939-2239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics