Skip to main content

Epigenetic Regulation of HIV, AIDS, and AIDS-Related Malignancies

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Although epigenetics is not a new field, its implications for acquired immunodeficiency syndrome (AIDS) research have not been explored fully. To develop therapeutic and preventive approaches against the human immunodeficiency virus (HIV) and AIDS, it is essential to understand the mechanisms of interaction between the virus and the host, involvement of genetic and epigenetic mechanisms, characterization of viral reservoirs, and factors influencing the latency of the virus. Both methylation of viral genes and histone modifications contribute to initiating and maintaining latency and, depending on the context, triggering viral gene repression or expression. This chapter discusses progress made at the National Institutes of Health (NIH), recommendations from the International AIDS Society Scientific Working Group on HIV Cure, and underlying epigenetic regulation. A number of epigenetic inhibitors have shown potential in treating AIDS-related malignancies. Epigenetic drugs approved by the US Food and Drug Administration and their implications for the eradication of HIV/AIDS and AIDS-related malignancies also are discussed.

Past and current progress in developing treatments and understanding the molecular mechanisms of AIDS and HIV infection has greatly improved patient survival. However, increased survival has been coupled with the development of cancer at higher rates than those observed among the HIV/AIDS-negative population. During the early days of the AIDS epidemic, the most frequent AIDS-defining malignancies were Kaposi’s sarcoma and non-Hodgkin lymphoma (NHL). Now, with increased survival as the result of widespread use in the developed world of highly active antiretroviral therapy (HAART), non-AIDS defining cancers (i.e., anal, skin, and lung cancers, and Hodgkin disease) are on the increase in HIV-infected populations. The current status of AIDS-related malignancies also is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablashi DV, Bernbaum J, DiPaolo JA (1995) Human herpesvirus 6 as a potential copathogen. Trends Microbiol 3:324–327

    Article  CAS  PubMed  Google Scholar 

  2. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  3. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  5. Esteller M (2011) Cancer epigenetics for the 21st century: what’s next? Genes Cancer 2:604–606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tysnes BB (2010) Tumor-initiating and -propagating cells: cells that we would like to identify and control. Neoplasia 12:506–515

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A (2008) Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27:404–408

    Article  CAS  PubMed  Google Scholar 

  8. Palacios JA, Perez-Pinar T, Toro C, Sanz-Minguela B, Moreno V, Valencia E, Gomez-Hernando C, Rodes B (2012) Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J Virol 86: 13081–13084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Colin L, Van Lint C (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6:111

    Article  PubMed Central  PubMed  Google Scholar 

  10. Deeks SG, Walker BD (2007) Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27:406–416

    Article  CAS  PubMed  Google Scholar 

  11. Li F, Li L, Zhong Y, Xie Q, Huang J, Kang X, Wang D, Xu L, Huang T (2013) Relationship between LTR Methylation and gag expression of HIV-1 in human spermatozoa and sperm-derived embryos. PLoS One 8:e54801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463:554–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Williams K, Seiss K, Beamon J, Pereyra F, Rosenberg ES, Walker BD, Yu XG, Lichterfeld M (2010) Epigenetic regulation of telomerase expression in HIV-1-specific CD8+ T cells. AIDS 24:1964–1966

    Article  CAS  PubMed  Google Scholar 

  14. du Chene I, Basyuk E, Lin YL, Triboulet R, Knezevich A, Chable-Bessia C, Mettling C, Baillat V, Reynes J, Corbeau P, Bertrand E, Marcello A, Emiliani S, Kiernan R, Benkirane M (2007) Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 26:424–435

    Article  PubMed Central  PubMed  Google Scholar 

  15. Imai K, Togami H, Okamoto T (2010) Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 285:16538–16545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hakre S, Chavez L, Shirakawa K, Verdin E (2012) HIV latency: experimental systems and molecular models. FEMS Microbiol Rev 36: 706–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Palmisano I, Della Chiara G, D’Ambrosio RL, Huichalaf C, Brambilla P, Corbetta S, Riba M, Piccirillo R, Valente S, Casari G, Mai A, Martinelli Boneschi F, Gabellini D, Poli G, Schiaffino MV (2012) Amino acid starvation induces reactivation of silenced transgenes and latent HIV-1 provirus via down-regulation of histone deacetylase 4 (HDAC4). Proc Natl Acad Sci U S A 109:E2284–E2293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Trono D, Van Lint C, Rouzioux C, Verdin E, Barre-Sinoussi F, Chun TW, Chomont N (2010) HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science 329:174–180

    Article  CAS  PubMed  Google Scholar 

  19. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9:45–57

    Article  CAS  PubMed  Google Scholar 

  20. Kehat I, Accornero F, Aronow BJ, Molkentin JD (2011) Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J Cell Biol 193:21–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK (2012) Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One 7:e36129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Anway MD, Skinner MK (2008) Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online 16:23–25

    Article  PubMed  Google Scholar 

  23. Han X, Li X, Yue SC, Anandaiah A, Hashem F, Reinach PS, Koziel H, Tachado SD (2012) Epigenetic regulation of tumor necrosis factor alpha (TNFalpha) release in human macrophages by HIV-1 single-stranded RNA (ssRNA) is dependent on TLR8 signaling. J Biol Chem 287:13778–13786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Carbone A, Cilia AM, Gloghini A, Capello D, Fassone L, Perin T, Rossi D, Canzonieri V, De Paoli P, Vaccher E, Tirelli U, Volpe R, Gaidano G (2000) Characterization of a novel HHV-8-positive cell line reveals implications for the pathogenesis and cell cycle control of primary effusion lymphoma. Leukemia 14:1301–1309

    Article  CAS  PubMed  Google Scholar 

  25. Breimer LH (1984) Did Moriz Kaposi describe AIDS in 1872? Clio Med 19:156–158

    CAS  PubMed  Google Scholar 

  26. Oettle AG (1962) Geographical and racial differences in the frequency of Kaposi’s sarcoma as evidence of environmental or genetic causes. Acta Unio Int Contra Cancrum 18:330–363

    CAS  PubMed  Google Scholar 

  27. Shamay M, Hand N, Lemas MV, Koon HB, Krown SE, Wrangle J, Desai P, Ramos JC, Ambinder RF (2012) CpG methylation as a tool to characterize cell-free Kaposi sarcoma herpesvirus DNA. J Infect Dis 205:1095–1099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Fatahzadeh M (2012) Kaposi sarcoma: review and medical management update. Oral Surg Oral Med Oral Pathol Oral Radiol 113:2–16

    Article  PubMed  Google Scholar 

  29. Papagatsia Z, Jones J, Morgan P, Tappuni AR (2009) Oral Kaposi sarcoma: a case of immune reconstitution inflammatory syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:70–75

    Article  PubMed  Google Scholar 

  30. Martellotta F, Berretta M, Vaccher E, Schioppa O, Zanet E, Tirelli U (2009) AIDS-related Kaposi’s sarcoma: state of the art and therapeutic strategies. Curr HIV Res 7:634–638

    Article  CAS  PubMed  Google Scholar 

  31. Wiley DJ, Huh J, Rao JY, Chang C, Goetz M, Poulter M, Masongsong E, Chang CI, Bernard HU (2005) Methylation of human papillomavirus genomes in cells of anal epithelia of HIV-infected men. J Acquir Immune Defic Syndr 39:143–151

    CAS  PubMed  Google Scholar 

  32. Khokhar A, Noorali S, Sheraz M, Mahalingham K, Pace DG, Khanani MR, Bagasra O (2012) Computational analysis to predict functional role of hsa-miR-3065-3p as an antiviral therapeutic agent for treatment of triple infections: HCV, HIV-1, and HBV. Libyan J Med 7:19774

    Article  PubMed  Google Scholar 

  33. Ramalingam D, Kieffer-Kwon P, Ziegelbauer JM (2012) Emerging themes from EBV and KSHV microRNA targets. Viruses 4:1687–1710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Joanne Brodsky of The Scientific Consulting Group, Inc., for reading the manuscript and providing suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Verma Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Verma, M. (2015). Epigenetic Regulation of HIV, AIDS, and AIDS-Related Malignancies. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics