Skip to main content

Mast Cell and Basophil Cell Lines: A Compendium

  • Protocol
  • First Online:
Basophils and Mast Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1192))

Abstract

Mast cells and basophils play a crucial role during type I hypersensitivity reactions. However, despite efforts to elucidate their role in the pathogenesis of allergy and inflammation, our understanding of mast cell and basophil biology is still relatively scarce. The practical difficulty in obtaining a sufficient number of purified primary cells from biological samples has slowed down the process of reaching a full understanding of the physiological role of these functionally similar cell types. The establishment of several immortalized cell lines has been a useful tool to establish and perform sophisticated laboratory protocols that are impractical using primary cells. Continuous cell lines have been extensively used to investigate the allergen/IgE-mediated cell activation, to elucidate the degranulation dynamics, to investigate structural and functional properties of the high-affinity receptor (FcεRI), and to test cell-stabilizing compounds. In this chapter we review the most widely used and better characterized mast cell and basophil cell lines, highlighting their advantages and drawbacks. It must be pointed out, however, that while cell lines represent a useful in vitro tool due to their easy manipulability and reduced culture costs, they often show aberrant characteristics which are not fully representative of primary cell physiology; results obtained with such cells therefore must be interpreted with due care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vogel L, Lüttkopf D, Hatahet L et al (2005) Development of a functional in vitro assay as a novel tool for the standardization of allergen extracts in the human system. Allergy 60:1021–1028

    Article  CAS  PubMed  Google Scholar 

  2. Lin J, Renault N, Haas H et al (2007) A novel tool for the detection of allergic sensitization combining protein microarrays with human basophils. Clin Exp Allergy 37:1854–1862

    Article  CAS  PubMed  Google Scholar 

  3. Ladics GS, van Bilsen JHM, Brouwer HMH et al (2008) Assessment of three human FcepsilonRI-transfected RBL cell-lines for identifying IgE induced degranulation utilizing peanut-allergic patient sera and peanut protein extract. Regul Toxicol Pharmacol 51:288–294

    Article  CAS  PubMed  Google Scholar 

  4. Gelbmann CM, Mestermann S, Gross V et al (1999) Strictures in Crohn’s disease are characterised by an accumulation of mast cells colocalised with laminin but not with fibronectin or vitronectin. Gut 45:210–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Raithel M, Winterkamp S, Pacurar A et al (2001) Release of mast cell tryptase from human colorectal mucosa in inflammatory bowel disease. Scand J Gastroenterol 36:174–179

    Article  CAS  PubMed  Google Scholar 

  6. Dvorak AM, Monahan RA, Osage JE et al (1980) Crohn’s disease: transmission electron microscopic studies. II. Immunologic inflammatory response. Alterations of mast cells, basophils, eosinophils, and the microvasculature. Hum Pathol 11:606–619

    Article  CAS  PubMed  Google Scholar 

  7. Bischoff SC (2007) Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 7:93–104

    CAS  PubMed  Google Scholar 

  8. Supajatura V, Ushio H, Nakao A et al (2002) Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest 109:1351–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Puxeddu I, Piliponsky AM, Bachelet I, Levi-Schaffer F (2003) Mast cells in allergy and beyond. Int J Biochem Cell Biol 35:1601–1607

    Article  CAS  PubMed  Google Scholar 

  10. Dawicki W, Marshall JS (2007) New and emerging roles for mast cells in host defence. Curr Opin Immunol 19:31–38

    Article  CAS  PubMed  Google Scholar 

  11. Brunner T, Heusser CH, Dahinden CA (1993) Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J Exp Med 177:605–611

    Article  CAS  PubMed  Google Scholar 

  12. Eccleston E, Leonard BJ, Lowe JS et al (1973) Basophilic leukaemia in the albino rat and a demonstration of the basopoietin. Nat New Biol 244:73–76

    Article  CAS  PubMed  Google Scholar 

  13. Passante E, Frankish N (2009) The RBL-2H3 cell line: its provenance and suitability as a model for the mast cell. Inflamm Res 58:737–745

    Article  CAS  PubMed  Google Scholar 

  14. Butterfield JH, Weiler D, Dewald G et al (1988) Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk Res 12:345–355

    Article  CAS  PubMed  Google Scholar 

  15. Kirshenbaum AS, Akin C, Wu Y et al (2003) Characterization of novel stem cell factor responsive human mast cell lines LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia; activation following aggregation of FcεRI or FcγRI. Leuk Res 27:677–682

    Article  CAS  PubMed  Google Scholar 

  16. Laidlaw TM, Steinke JW, Tiñana AM et al (2011) Characterization of a novel human mast cell line that responds to stem cell factor and expresses functional FcεRI. J Allergy Clin Immunol 127:815–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nilsson G, Blom T, Kusche-Gullberg M et al (1994) Phenotypic characterization of the human mast-cell line HMC-1. Scand J Immunol 39:489–498

    Article  CAS  PubMed  Google Scholar 

  18. Sundström M, Vliagoftis H, Karlberg P et al (2003) Functional and phenotypic studies of two variants of a human mast cell line with a distinct set of mutations in the c-kit proto-oncogene. Immunology 108:89–97

    Article  PubMed Central  PubMed  Google Scholar 

  19. Edling CE, Hallberg B (2007) c-Kit-a hematopoietic cell essential receptor tyrosine kinase. Int J Biochem Cell Biol 39:1995–1998

    Article  CAS  PubMed  Google Scholar 

  20. Furitsu T, Tsujimura T, Tono T et al (1993) Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 92:1736–1744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Worobec AS, Semere T, Nagata H et al (1998) Clinical correlates of the presence of the Asp816Val c-kit mutation in the peripheral blood mononuclear cells of patients with mastocytosis. Cancer 83:2120–2129

    Article  CAS  PubMed  Google Scholar 

  22. Longley BJ, Metcalfe DD, Tharp M et al (1999) Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci U S A 96:1609–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cruse G, Kaur D, Leyland M et al (2010) A novel FcεRIβ-chain truncation regulates human mast cell proliferation and survival. FASEB J 24:4047–4057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Xia YC, Sun S, Kuek LE et al (2011) Human mast cell line-1 (HMC-1) cells transfected with FcεRIα are sensitive to IgE/antigen-mediated stimulation demonstrating selectivity towards cytokine production. Int Immunopharmacol 11:1002–1011

    Article  CAS  PubMed  Google Scholar 

  25. Guhl S, Babina M, Neou A et al (2010) Mast cell lines HMC-1 and LAD2 in comparison with mature human skin mast cells-drastically reduced levels of tryptase and chymase in mast cell lines. Exp Dermatol 19:845–847

    Article  CAS  PubMed  Google Scholar 

  26. Kishi K (1985) A new leukemia cell line with Philadelphia chromosome characterized as basophil precursors. Leuk Res 9:381–390

    Article  CAS  PubMed  Google Scholar 

  27. Yamashita M, Ichikawa A, Katakura Y et al (2001) Induction of basophilic and eosinophilic differentiation in the human leukemic cell line KU812. Cytotechnology 36:179–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Fukuda T, Kishi K, Ohnishi Y et al (1987) Bipotential cell differentiation of KU812: evidence of a hybrid cell line that differentiates into basophils and macrophage-like cells. Blood 70:612–619

    CAS  PubMed  Google Scholar 

  29. Fischkoff SA, Kishi K, Benjamin WR et al (1987) Induction of differentiation of the human leukemia cell line, KU812. Leuk Res 11:1105–1113

    Article  CAS  PubMed  Google Scholar 

  30. Blom T, Huang R, Aveskogh M et al (1992) Phenotypic characterization of KU812, a cell line identified as an immature human basophilic leukocyte. Eur J Immunol 22:2025–2032

    Article  CAS  PubMed  Google Scholar 

  31. Magnusson CG, Håård J, Matsson P et al (1995) Demonstration of specific high-affinity Fc epsilon-receptors on the human basophil-like leukemia cell line KU812 by flow cytometry. Allergy 50:72–77

    Article  CAS  PubMed  Google Scholar 

  32. Almlöf I, Nilsson K, Johansson V, Akerblom E, Slotte H, Ahlstedt S, Matsson P (1988) Induction of Basophilic Differentiation in the Human Basophilic Cell Line KU812. Scand J Immunol 28:293–300

    Article  PubMed  Google Scholar 

  33. Nilsson G, Carlsson M, Jones I et al (1994) TNF-alpha and IL-6 induce differentiation in the human basophilic leukaemia cell line KU812. Immunology 81:73–78

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hutt-Taylor SR, Harnish D, Richardson M et al (1988) Sodium butyrate and a T lymphocyte cell line-derived differentiation factor induce basophilic differentiation of the human promyelocytic leukemia cell line HL-60. Blood 71:209–215

    CAS  PubMed  Google Scholar 

  35. Valent P, Besemer J, Kishi K et al (1990) IL-3 promotes basophilic differentiation of KU812 cells through high affinity binding sites. J Immunol 145:1885–1889

    CAS  PubMed  Google Scholar 

  36. Nakazawa M, Mitjavila MT, Debili N et al (1989) KU 812: a pluripotent human cell line with spontaneous erythroid terminal maturation. Blood 73:2003–2013

    CAS  PubMed  Google Scholar 

  37. Valent P, Besemer J, Sillaber C et al (1990) Failure to detect IL-3-binding sites on human mast cells. J Immunol 145:3432–3437

    CAS  PubMed  Google Scholar 

  38. Razin E, Ihle JN, Seldin D et al (1984) Interleukin 3: A differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. J Immunol 132:1479–1486

    CAS  PubMed  Google Scholar 

  39. Dearman RJ, Skinner RA, Deakin N, Shaw D, Kimber I (2005) Evaluation of an in vitro method for the measurement of specific IgE antibody responses: the rat basophilic leukemia (RBL) cell assay. Toxicology 206:195–205

    Article  CAS  PubMed  Google Scholar 

  40. Kulczycki A, Metzger H (1974) The interaction of IgE with rat basophilic leukemia cells. II Quantitative aspects of the binding reaction. J Exp Med 140:1676–1695

    Article  PubMed Central  PubMed  Google Scholar 

  41. Rashid A, Sadroddiny E, Ye HT et al (2012) Review: Diagnostic and therapeutic applications of rat basophilic leukemia cells. Mol Immunol 52:224–228

    Article  CAS  PubMed  Google Scholar 

  42. Holowka D, Hartmann H, Kanellopoulos J et al (1980) Association of the receptor for immunoglobulin E with an endogenous polypeptide on rat basophilic leukemia cells. J Recept Res 1:41–68

    CAS  PubMed  Google Scholar 

  43. Goetze A, Kanellopoulos J, Rice D et al (1981) Enzymatic cleavage products of the alpha subunit of the receptor for immunoglobulin E. Biochemistry 20:6341–6349

    Article  CAS  PubMed  Google Scholar 

  44. Kraft S, Kinet J-P (2007) New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 7:365–378

    CAS  PubMed  Google Scholar 

  45. Ra C, Jouvin MH, Kinet JP (1989) Complete structure of the mouse mast cell receptor for IgE (Fc epsilon RI) and surface expression of chimeric receptors (rat-mouse-human) on transfected cells. J Biol Chem 264:15323–15327

    CAS  PubMed  Google Scholar 

  46. Akizawa Y (2003) Regulation of human FcepsilonRI beta chain gene expression by Oct-1. Int Immunol 15:549–556

    Article  CAS  PubMed  Google Scholar 

  47. Hara T, Yamada K, Tachibana H (1998) Basophilic differentiation of the human leukemia cell line KU812 upon treatment with interleukin-4. Biochem Biophys Res Commun 247:542–548

    Article  CAS  PubMed  Google Scholar 

  48. Gilfillan AM, Kado-Fong H, Wiggan GA et al (1992) Conservation of signal transduction mechanisms via the human Fc epsilon RI alpha after transfection into a rat mast cell line, RBL 2H3. J Immunol 149:2445–2451

    CAS  PubMed  Google Scholar 

  49. Takagi K, Nakamura R, Teshima R et al (2003) Application of human Fc epsilon RI alpha-chain-transfected RBL-2H3 cells for estimation of active serum IgE. Biol Pharm Bull 26:252–255

    Article  CAS  PubMed  Google Scholar 

  50. Passante E, Ehrhardt C, Sheridan H et al (2009) RBL-2H3 cells are an imprecise model for mast cell mediator release. Inflamm Res 58:611–618

    Article  CAS  PubMed  Google Scholar 

  51. Hoffmann A, Jamin A, Foetisch K et al (1999) Determination of the allergenic activity of birch pollen and apple prick test solutions by measurement of beta-hexosaminidase release from RBL-2H3 cells. Comparison with classical methods in allergen standardization. Allergy 54:446–454

    Article  CAS  PubMed  Google Scholar 

  52. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egle Passante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Passante, E. (2014). Mast Cell and Basophil Cell Lines: A Compendium. In: Gibbs, B., Falcone, F. (eds) Basophils and Mast Cells. Methods in Molecular Biology, vol 1192. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1173-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1173-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1172-1

  • Online ISBN: 978-1-4939-1173-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics