Skip to main content

Assessment of Phagocytic Activity of Cultured Macrophages Using Fluorescence Microscopy and Flow Cytometry

  • Protocol
  • First Online:
Cytokine Bioassays

Abstract

Phagocytosis is the process by which phagocytes, including macrophages, neutrophils and monocytes, engulf and kill invading pathogens, remove foreign particles, and clear cell debris. Phagocytes and their ability to phagocytose are an important part of the innate immune system and are critical for homeostasis of the host. Impairment in phagocytosis has been associated with numerous diseases and disorders. Different cytokines have been shown to affect the phagocytic process. Cytokines including TNFα, IL-1β, GM-CSF, and TGF-β1 were found to promote phagocytosis, whereas high mobility group box-1 (HMGB1) inhibited the phagocytic function of macrophages. Here, we describe two commonly used methods to assess the phagocytic function of cultured macrophages, which can easily be applied to other phagocytes. Each method is based on the extent of engulfment of FITC-labeled latex minibeads by macrophages under different conditions. Phagocytic activity can be assessed either by counting individual cells using a fluorescence microscope or measuring fluorescence intensity using a flow cytometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Metchnikoff I (1884) A disease of Daphnia caused by a yeast. A contribution to the theory of phagocytes as agents for attack on disease-causing organisms. Archiv Pathol Anat Physiol Klin Med 96:177–195

    Google Scholar 

  2. Flannagan RS, Jaumouillé V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol 7:61–98

    Article  CAS  PubMed  Google Scholar 

  3. Underhill DM, Goodridge HS (2012) Information processing during phagocytosis. Nat Rev Immunol 12:492–502

    Article  CAS  PubMed  Google Scholar 

  4. Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9:639–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Garin J, Diez R, Kieffer S et al (2001) The phagosome proteome insight into phagosome functions. J Cell Biol 152:165–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Greenberg S, Grinstein S (2002) Phagocytosis and innate immunity. Curr Opin Immunol 14:136–145

    Article  CAS  PubMed  Google Scholar 

  7. Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5:85–87

    Article  CAS  PubMed  Google Scholar 

  8. Martin TR, Frevert CW (2005) Innate immunity in the lungs. Proc Am Thorac Soc 2:403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zhang P, Summer WR, Bagby GJ et al (2000) Innate immunity and pulmonary host defense. Immunol Rev 173:39–51

    Article  CAS  PubMed  Google Scholar 

  10. Savill J, Dransfield I, Gregory C et al (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975

    Article  CAS  PubMed  Google Scholar 

  11. Hodge S, Hodge G, Scicchitano R et al (2003) Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol 81:289–296

    Article  PubMed  Google Scholar 

  12. Berenson CS, Garlipp MA, Grove LJ et al (2006) Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J Infect Dis 194:1375–1384

    Article  PubMed  Google Scholar 

  13. McClure CD, Schiller NL (1996) Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo. Curr Microbiol 33:109–117

    Article  CAS  PubMed  Google Scholar 

  14. Smith ME (2001) Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc Res Tech 54:81–94

    Article  CAS  PubMed  Google Scholar 

  15. Andrews T, Sullivan KE (2003) Infections in patients with inherited defects in phagocytic function. Clin Microbiol Rev 16:597–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Taylor A, Finney-Hayward T, Quint J et al (2010) Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J 35:1039–1047

    Article  CAS  PubMed  Google Scholar 

  17. Donnelly LE, Barnes PJ (2012) Defective phagocytosis in airways disease. Chest J 141:1055–1062

    Article  Google Scholar 

  18. O’Reilly PJ, Hickman-Davis JM, Davis IC et al (2003) Hyperoxia impairs antibacterial function of macrophages through effects on actin. Am J Respir Cell Mol Biol 28:443–450

    Article  PubMed  Google Scholar 

  19. Morrow DMP, Entezari-Zaher T, Romashko J III et al (2007) Antioxidants preserve macrophage phagocytosis of Pseudomonas aeruginosa during hyperoxia. Free Radic Biol Med 42:1338–1349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Suttorp N, Simon LM (1983) Decreased bactericidal function and impaired respiratory burst in lung macrophages after sustained in vitro hyperoxia. Am Rev Respir Dis 128:486–490

    CAS  PubMed  Google Scholar 

  21. Patel VS, Sitapara RA, Gore A et al (2013) High Mobility Group Box-1 mediates hyperoxia-induced impairment of Pseudomonas aeruginosa clearance and inflammatory lung injury in mice. Am J Respir Cell Mol Biol 48:280–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Phipps JC, Aronoff DM, Curtis JL et al (2010) Cigarette smoke exposure impairs pulmonary bacterial clearance and alveolar macrophage complement-mediated phagocytosis of Streptococcus pneumoniae. Infect Immun 78:1214–1220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Davis KA (2006) Ventilator-associated pneumonia: a review. J Intensive Care Med 21:211–226

    Article  PubMed  Google Scholar 

  24. Hartl D, Latzin P, Hordijk P et al (2007) Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 13:1423–1430

    Article  CAS  PubMed  Google Scholar 

  25. Ren Y, Savill J (1995) Proinflammatory cytokines potentiate thrombospondin-mediated phagocytosis of neutrophils undergoing apoptosis. J Immunol 154:2366–2374

    CAS  PubMed  Google Scholar 

  26. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  CAS  PubMed  Google Scholar 

  27. Entezari M, Weiss DJ, Sitapara R et al (2012) Inhibition of HMGB1 enhances bacterial clearance and protects against P. aeruginosa pneumonia in cystic fibrosis. Mol Med 18:477–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. van Zoelen MA, Ishizaka A, Wolthuis EK et al (2008) Pulmonary levels of high-mobility group box 1 during mechanical ventilation and ventilator-associated pneumonia. Shock 29:441–445

    PubMed  Google Scholar 

  29. Liu G, Wang J, Park YJ et al (2008) High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J Immunol 181:4240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kennedy TP, Nelson S (2013) Hyperoxia, HMGB1, and ventilator-associated pneumonia: reducing risk by practicing what we teach. Am J Respir Cell Mol Biol 48:269–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Barile FA (2013) Cell culture methodology. In: Principles of toxicology testing, vol 2, 2nd edn, CRC press, Boca Raton, pp 163–186

    Google Scholar 

  32. Drevets DA, Campbell PA (1991) Macrophage phagocytosis: use of fluorescence microscopy to distinguish between extracellular and intracellular bacteria. J Immunol Methods 142:31–38

    Article  CAS  PubMed  Google Scholar 

  33. Dunn P, Tyrer H (1981) Quantitation of neutrophil phagocytosis, using fluorescent latex beads. Correlation of microscopy and flow cytometry. J Lab Clin Med 98:374–381

    CAS  PubMed  Google Scholar 

  34. Lehmann AK, Sørnes S, Halstensen A (2000) Phagocytosis: measurement by flow cytometry. J Immunol Methods 243:229–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants (LLM) from National Heart and Blood Institute (HL093708) and St. John’s University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin L. Mantell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Sharma, L. et al. (2014). Assessment of Phagocytic Activity of Cultured Macrophages Using Fluorescence Microscopy and Flow Cytometry. In: Vancurova, I. (eds) Cytokine Bioassays. Methods in Molecular Biology, vol 1172. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0928-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0928-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0927-8

  • Online ISBN: 978-1-4939-0928-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics