Skip to main content

Analyzing Ras-Associated Cell Proliferation Signaling

  • Protocol
  • First Online:
Cell Cycle Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1170))

Abstract

Ras-dependent signaling is an important regulator of cell cycle progression, proliferation, senescence, and apoptosis. Several of the downstream effectors of Ras play dual roles in each of these processes. Under one set of conditions, they promote cell cycle progression and proliferation; yet, in a different paradigm, they drive cell cycle arrest and apoptosis. Furthermore, there is cross talk between certain downstream effectors of Ras including the PI3K–AKT and Raf–MEK–ERK pathways. Here we describe a series of experiments used to dissect the effect of different Ras-dependent signaling pathways on cell cycle progression, proliferation, senescence, and apoptosis. Furthermore, we highlight the importance of consistent growth conditions of cells in culture when studying Ras-dependent signaling as we show that the activation of downstream effectors of Ras changes with the confluency at which the cells are grown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465

    Article  CAS  PubMed  Google Scholar 

  2. Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8(8):1168–1175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kim JK, Diehl JA (2009) Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol 220(2):292–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  CAS  PubMed  Google Scholar 

  5. Tokunaga E, Oki E, Egashira A, Sadanaga N, Morita M, Kakeji Y, Maehara Y (2008) Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets 8(1):27–36

    Article  CAS  PubMed  Google Scholar 

  6. Chien Y, White MA (2003) RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 4(8):800–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lim KH, O’Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ, Counter CM (2006) Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 16:2385–2394

    Article  CAS  PubMed  Google Scholar 

  8. Gille H, Sharrocks AD, Shaw PE (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358:414–417

    Article  CAS  PubMed  Google Scholar 

  9. Lenormand P, Sardet C, Pages G, L’Allemain G, Brunet A, Pouyssegur J (1993) Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol 122(5):1079–1088

    Article  CAS  PubMed  Google Scholar 

  10. Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12(3):915–927

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhao J, Yuan X, Frodin M, Grummt I (2003) ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol Cell 11:405–413

    Article  CAS  PubMed  Google Scholar 

  12. Finnberg N, El-Deiry WS (2004) Activating FOXO3a, NF-kappaB and p53 by targeting IKKs: an effective multi-faceted targeting of the tumor-cell phenotype? Cancer Biol Ther 3(7):614–616

    Article  CAS  PubMed  Google Scholar 

  13. Burgering BM, Kops GJ (2002) Cell cycle and death control: long live Forkheads. Trends Biochem Sci 27(7):352–360

    Article  CAS  PubMed  Google Scholar 

  14. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, Burgering BM, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ (2000) Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcription regulation of p27KIP1. Mol Cell Biol 20(24):9138–9148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF, Chen RH (2005) Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J 24(2):294–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22(22):7842–7852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Burgering BM, Medema RH (2003) Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73(6):689–701

    Article  CAS  PubMed  Google Scholar 

  18. Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782–787

    Article  CAS  PubMed  Google Scholar 

  19. Alt JR, Cleveland JL, Hannink M, Diehl JA (2000) Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev 14:3102–3114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3B regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Biggs WH 3rd, Meisenhelder J, Hunter T, Cavenee WK, Arden KC (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged heliz transcription factor FKHR1. Proc Natl Acad Sci U S A 96:7421–7426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  23. Rena G, Guo S, Cichy SC, Unterman TG, Cohen P (1999) Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274(24):17179–17183

    Article  CAS  PubMed  Google Scholar 

  24. Romashkova JA, Makarov SS (1999) NF-kB is a target of AKT in anti-apoptotic PDGF signaling. Nature 401:86–90

    Article  CAS  PubMed  Google Scholar 

  25. Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB.J Biol Chem 273(49):32377–32379

    Article  CAS  PubMed  Google Scholar 

  26. Campbell PM, Singh A, Williams FJ, Frantz K, Ulku AS, Kelley GG, Der CJ (2006) Genetic and pharmacologic dissection of Ras effector utilization in oncogenesis. Methods Enzymol 407:195–216

    Article  CAS  PubMed  Google Scholar 

  27. Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG (1995) Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 270(40):23589–23597

    Article  CAS  PubMed  Google Scholar 

  28. Vaque JP, Fernandez-Garcia B, Garcia-Sanz P, Ferrandiz N, Bretones G, Calvo F, Crespo P, Marin MC, Leon J (2008) c-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation. Mol Cancer Res 6(2):325–339

    Article  CAS  PubMed  Google Scholar 

  29. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  CAS  PubMed  Google Scholar 

  31. Benanti JA, Galloway DA (2004) Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol 24(7):2842–2852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhuang D et al (2008) C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27:6623–6634

    Article  CAS  PubMed  Google Scholar 

  33. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124(4):619–626

    Article  CAS  PubMed  Google Scholar 

  34. Re F, Zanetti A, Sironi M, Polentarutti N, Lanfrancone L, Dejana E, Colotta F (1994) Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol 127(2):537–546

    Article  CAS  PubMed  Google Scholar 

  35. McFall A, Ulku A, Lambert QT, Kusa A, Rogers-Graham K, Der CJ (2001) Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase. Mol Cell Biol 21(16):5488–5499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ma Z, Liu Z, Wu RF, Terada LS (2010) p66Shc restrains Ras hyperactivation and suppresses metastatic behavior. Oncogene 29:5559–5567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192(3):373–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Taylor SJ, Shalloway D (1996) Cell cycle-dependent activation of Ras. Curr Biol 6(12):1621–1627

    Article  CAS  PubMed  Google Scholar 

  39. Campbell PM, Groehler AL, Lee KM, Ouellette MM, Khazak V, Der CJ (2007) K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res 67(5):2098–2106

    Article  CAS  PubMed  Google Scholar 

  40. Ma Z, Myers DP, Wu RF, Nwariaku FE, Terada LS (2007) p66Shc mediates anoikis through RhoA. J Cell Biol 179(1):23–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Noonan EJ, Place RF, Basak S, Pookot D, Li LC (2010) miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget 1(5):349–358

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Channing J. Der for the kind gift of the GTPase-binding domain pGEX constructs used in the pulldown assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stout, M.C., Asiimwe, E., Birkenstamm, J.R., Kim, S.Y., Campbell, P.M. (2014). Analyzing Ras-Associated Cell Proliferation Signaling. In: Noguchi, E., Gadaleta, M. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 1170. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0888-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0888-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0887-5

  • Online ISBN: 978-1-4939-0888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics