Skip to main content

Modeling Excitotoxic Ischemic Brain Injury of Cerebellar Purkinje Neurons by Intravital and In Vitro Multi-photon Laser Scanning Microscopy

  • Protocol
  • First Online:
Laser Scanning Microscopy and Quantitative Image Analysis of Neuronal Tissue

Part of the book series: Neuromethods ((NM,volume 87))

Abstract

The analysis of cell morphology and connectivity of nerve cells is of particular interest for the study of various forms of cellular damage in the central nervous system (CNS) caused, for example, by stroke or neurodegenerative pathologies. Several experimental models have been established over the years to study structural changes under these conditions using both in vitro and in vivo approaches. In this context, the use of transgenic reporter mice has revolutionized study of neuronal cytoarchitecture in living and fixed tissue. In order to choose the right system for studying a particular aspect of pathological changes in the CNS, it is essential to understand the benefits and limitations of these models. Here, we provide a detailed comparison between in vitro and intravital analysis of structural changes of neuronal networks using the example of altered complexity of the dendritic arbor of Purkinje neurons in response to excitotoxicity and ischemic brain injury. A particular focus of this chapter is the discussion of technical considerations for carrying out multi-photon laser scanning microscopy (MP-LSM) analysis of Purkinje neuron morphology in the brain of living mice and in slice cultures of cerebellar tissue. This includes aspects for optimizing experimental conditions such as multi-photon excitation, fluorescence emission detection, and factors impacting on the level of spatial resolution. While this chapter focuses on excitotoxic damage, it also serves as a guide for experimental designs studying neuronal damage in the CNS caused by other means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tamamaki N, Yanagawa Y, Tomioka R et al (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79

    Article  CAS  PubMed  Google Scholar 

  2. Oliva AA Jr, Jiang M, Lam T et al (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368

    CAS  PubMed  Google Scholar 

  3. Uusisaari M, Obata K, Knopfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97:901–911

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Kakizaki T, Sakagami H et al (2009) Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse. Neuroscience 164:1031–1043

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Bendito G, Sturgess K, Erdelyi F et al (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14:1122–1133

    Article  PubMed  Google Scholar 

  6. Bang SJ, Commons KG (2012) Forebrain GABAergic projections from the dorsal raphe nucleus identified by using GAD67-GFP knock-in mice. J Comp Neurol 520: 4157–4167

    Article  CAS  PubMed  Google Scholar 

  7. Cabezas C, Irinopoulou T, Gauvain G et al (2012) Presynaptic but not postsynaptic GABA signaling at unitary mossy fiber synapses. J Neurosci 32:11835–11840

    Article  CAS  PubMed  Google Scholar 

  8. Wadleigh A, Valenzuela CF (2012) Ethanol increases GABAergic transmission and excitability in cerebellar molecular layer interneurons from GAD67-GFP knock-in mice. Alcohol Alcohol 47:1–8

    Article  CAS  PubMed  Google Scholar 

  9. Matrisciano F, Tueting P, Dalal I et al (2013) Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology 68:184–194

    Article  CAS  PubMed  Google Scholar 

  10. Bullen A (2008) Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov 7:54–67

    Article  CAS  PubMed  Google Scholar 

  11. Potter SM, Wang CM, Garrity PA et al (1996) Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy. Gene 173:25–31

    Article  CAS  PubMed  Google Scholar 

  12. Bush PG, Wokosin DL, Hall AC (2007) Two-versus one photon excitation laser scanning microscopy: critical importance of excitation wavelength. Front Biosci 12:2646–2657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Su T, Paradiso B, Long YS et al (2011) Evaluation of cell damage in organotypic hippocampal slice culture from adult mouse: a potential model system to study neuroprotection. Brain Res 1385:68–76

    Article  CAS  PubMed  Google Scholar 

  14. Mulholland PJ, Stepanyan TD, Self RL et al (2005) Corticosterone and dexamethasone potentiate cytotoxicity associated with oxygen-glucose deprivation in organotypic cerebellar slice cultures. Neuroscience 136:259–267

    Article  CAS  PubMed  Google Scholar 

  15. Hurtado de Mendoza T, Balana B, Slesinger PA et al (2011) Organotypic cerebellar cultures: apoptotic challenges and detection. J Vis Exp 51:2564

    PubMed  Google Scholar 

  16. Calvet MC, Calvet J, Eude D et al (1985) Morphologic and functional abnormalities that develop in kitten Purkinje neurons during maintenance for months after maturation in organotypic cultures. Brain Res 341:205–221

    Article  CAS  PubMed  Google Scholar 

  17. Zheng W, Watts LT, Holstein DM et al (2010) Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria. PLoS One 5:e14401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dickinson ME, Simbuerger E, Zimmermann B et al (2003) Multiphoton excitation spectra in biological samples. J Biomed Opt 8:329–338

    Article  PubMed  Google Scholar 

  19. Drummond DR, Carter N, Cross RA (2002) Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors. J Microsc 206:161–169

    Article  CAS  PubMed  Google Scholar 

  20. Stork CJ, Li YV (2006) Measuring cell viability with membrane impermeable zinc fluorescent indicator. J Neurosci Methods 155:180–186

    Article  CAS  PubMed  Google Scholar 

  21. Benavides-Piccione R, Fernaud-Espinosa I, Robles V et al (2013) Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. Cereb Cortex 23(8):1798–1810

    Article  PubMed  Google Scholar 

  22. Velazquez-Zamora DA, Martinez-Degollado M, Gonzalez-Burgos I (2011) Morphological development of dendritic spines on rat cerebellar Purkinje cells. Int J Dev Neurosci 29:515–520

    Article  CAS  PubMed  Google Scholar 

  23. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12: 2685–2705

    CAS  PubMed  Google Scholar 

  24. Matsuzaki M, Honkura N, Ellis-Davies GC et al (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  Google Scholar 

  25. Arellano JI, Benavides-Piccione R, Defelipe J et al (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1:131–143

    Article  PubMed Central  PubMed  Google Scholar 

  26. Wake H, Moorhouse AJ, Jinno S et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  CAS  PubMed  Google Scholar 

  27. Petrinovic MM, Hourez R, Aloy EM et al (2013) Neuronal Nogo-A negatively regulates dendritic morphology and synaptic transmission in the cerebellum. Proc Natl Acad Sci USA 110:1083–1088

    Article  CAS  PubMed  Google Scholar 

  28. Johannssen HC, Helmchen F (2010) In vivo Ca2+ imaging of dorsal horn neuronal populations in mouse spinal cord. J Physiol 588: 3397–3402

    Article  CAS  PubMed  Google Scholar 

  29. Stosiek C, Garaschuk O, Holthoff K et al (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    Article  CAS  PubMed  Google Scholar 

  30. Murphy TH, Li P, Betts K et al (2008) Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci 28:1756–1772

    Article  CAS  PubMed  Google Scholar 

  31. Takatsuru Y, Fukumoto D, Yoshitomo M et al (2009) Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci 29:10081–10086

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by UNSW Goldstar funding to A.J.C., G.H., and T.F., and a UNSW Vice Chancellor’s postdoctoral Fellowship to A.J.C. ARC funding (DP110102771) to T.F. We also thank Professor Yuchio Yanagawa, Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan for providing the GAD67-GFP reporter mouse line and Leanne Bischof, Quantitative Imaging Group, CSIRO Mathematics, Information and Statistics, North Ryde, NSW, Australia for support with the Workspace Image software used for quantitative analysis of neuronal cytoarchitecture. Zeiss Australia is thanked for supporting the confocal and multi-photon microscopy installation in the Translational Neuroscience Facility, and Gavin Symonds is thanked for his technical support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Craig, A.J., Housley, G.D., Fath, T. (2014). Modeling Excitotoxic Ischemic Brain Injury of Cerebellar Purkinje Neurons by Intravital and In Vitro Multi-photon Laser Scanning Microscopy. In: Bakota, L., Brandt, R. (eds) Laser Scanning Microscopy and Quantitative Image Analysis of Neuronal Tissue. Neuromethods, vol 87. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0381-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0381-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0380-1

  • Online ISBN: 978-1-4939-0381-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics