Skip to main content

Abstract

Fungal plant pathogens establish parasitic relationships with their respective hosts primarily for the perpetuation of the pathogen. Before such relationships can develop, several recognition steps must occur during the early stages of the association. Most important are perception of the correct direction of hyphal growth or movement (as with zoospore taxis) of the pathogen to an appropriate infection site, recognition of that site, and recognition that a successful interaction has occurred between the fungus and host. A successful host—parasite relationship will be aborted should any of these steps fail. Other important tropic recognition steps have been discussed in detail by Wynn and Staples (1981). Of particular relevance to the topic of this chapter are the first two steps, recognition by the fungus of the right place and time for infection structure formation. Some fungal propagules, such as uredospore germlings of many of the rust fungi, e.g., Uromyces appendiculatus, Puccinia graminis tritici, and P. sorghi, must seek and recognize leaf stomata, the only site that triggers appressorium formation (the first in a series of specialized infection structures produced by these organisms). Furthermore, these pathogens only enter the host through the stomatal aperture. Similarly, the causal agent of downy mildew of grape, Plasmopara viticola, produces zoospores that generally swim toward stomata through which ingress into the host is achieved. In this case the pathogen exhibits a taxic movement, a relatively uncommon feature for most filamentous fungal pathogens. Other nonstomatal penetrating fungal pathogens may or may not exhibit preferences for specific sites. Many of the foliar pathogens are capable of forming appressoria at almost any place on the host (and nonhost). Spores germinate and grow without any apparent preference for direction and develop appressoria at times and places determined by environmental, physiological, genetic, and/or temporal factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aist, J. R., 1981, Development of parasitic conidial fungi in plants, in: Biology of Conidial Fungi, Volume 2 ( G. T. Cole and B. Kendrick, eds.), Academic Press, New York, pp. 75–110.

    Chapter  Google Scholar 

  • Akai, S., Fukutomi, M., Ishida, N., and Kunoh, H., 1967, An anatomical approach to the mechanism of fungal infections in plants, in: The Dynamic Role of Molecular Constituents in Plant-Parasite Interaction (C. J. Mirocha and I. Uritani, eds.), American Phytopathological Society, St. Paul, pp. 1–20.

    Google Scholar 

  • Allen, P J., 1957, Properties of a volatile fraction from urediospores of Puccinia graminis var tritici affecting their germination and development. I. Biological activity. Plant Physiol. 32: 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Allen, P. J., and Dunkle, L. D., 1970, Natural activators and inhibitors of spore germination. In: Morphological and Biochemical Events in Plant-Parasite Interactions ( S. Akai, and S. Ouchi, eds.), pp. 23–58. Phytopathological Society of Japan, Tokyo.

    Google Scholar 

  • Anderson, J. L., and Walker, J. C., 1962, Histology of watermelon anthracnose, Phytopathology 52: 650–653.

    Google Scholar 

  • Armentrout, V. N., and Downer, A. J., 1987, Infection cushion development by Rhizoctonia solani on cotton, Phytopathology 77: 619–623.

    Article  Google Scholar 

  • Armentrout, V. N., Downer, A. J., Grasmick, D. L., and Weinhold, A. R., 1987, Factors affecting infection cushion development by Rhizoctonia solani on cotton, Phytopathology 77: 623–630.

    Google Scholar 

  • Berridge, M. J., 1985, The molecular basis of communication within the cell, Sci Am. 235: 142–152.

    Article  Google Scholar 

  • Berridge, M. J., 1987, Inositol triphosphate and diacylglycerol: TWo interacting second messengers, Annu. Rev. Biochem. 56: 159–193.

    Article  PubMed  CAS  Google Scholar 

  • Bhairi, S. M., Staples, R. C., Freve, P, and Yoder, O. C., 1989, Characterization of an infection structure specific gene from the rust fungus, Uromyces appendiculatus, Gene 81: 237–243.

    Article  CAS  Google Scholar 

  • Bhairi, S., Buckley, E. H., and Staples, R. C., 1990, Protein synthesis and gene expression during appressorium formation in Gomerella magna, Exp. Mycol. (in press).

    Google Scholar 

  • Bonde, M. R., Melching, J. S., and Bromfield, K. R., 1976, Histology of the suscept-pathogen relationship between Clycine max and Phakopsora pachyrhizi, the cause of soybean rust, Phytopathology 66: 1290–1294.

    Article  Google Scholar 

  • Boss, M. J., Crain, R. C., and Satter, R. L., 1985, Polyphosphoinositides are present in plant tissue culture cells, Biochem. Biophys. Res. Commun. 132: 1018–1023.

    Article  PubMed  CAS  Google Scholar 

  • Bourett, T. M., Hoch, H. C., and Staples, R. C., 1987, Association of the microtubule cytoskeleton with the thigmotropic signal for appressorium formation in Uromyces, Mycologia 79: 540–545.

    Article  Google Scholar 

  • Boyle, C., 1921, Studies on the physiology of parasitism. IV. Infection by Sclerotinia libertiana, Ann. Bot. 35: 337–347.

    Google Scholar 

  • Brown, W, and Harvey, C. C., 1927, Studies on the physiology of parasitism. X. On the entrance of parasitic fungi into the host plant, Ann. Bot. 41: 643–662.

    Google Scholar 

  • Brunswik, H., 1924, Untersuchungen über die Geschlechts und Kernverhältnisse bei den Hymenomyceten Gattung Coprinus, Bot. Ann. K. Goebel. 5.

    Google Scholar 

  • Castle, E. S., 1942, Spiral growth and reversal of spiraling in phycomyces, and their gearing on primary wall structure, Am. J. Bot. 29: 664–672.

    Article  Google Scholar 

  • Chang, H. S., and Calpouzos, L., 1973, Phototropism of the uredospore germ tubes of Puccinia graminis tritici, Bot. Bull. Acad. Sin. 14: 35–40.

    Google Scholar 

  • Clark, C. A., and Lorbeer, J. W, 1976a, Comparative histopathology of Botrytis squamose and B. cinerea on onion leaves, Phytopathology 66: 1279–1289.

    Article  Google Scholar 

  • Clark, C. A., and Lorbeer, J. W, 1976b, The development of Botrytis squamose and B. cinerea on surface of onion leaves as affected by exogenous nutrients and epiphytic bacteria, in: Advances in the Microbiology of the Aerial Surfaces of Plants ( C. H. Dickinson, and T. F. Preece, eds.), Academic Press, New York, pp. 607–625.

    Google Scholar 

  • Cohen, Y., 1981, The processes of infection of downy mildews on leaf surfaces, in: Microbial Ecology of the Phylloplane ( J. P. Blakeman, ed.) Academic Press, New York, pp. 113–133.

    Google Scholar 

  • Cohen, Y., and Eyal, H., 1980, Effects of light during infection on the incidence of downy mildew (Pseudoperonospora cubensis) on cucumbers, Physiol Plant Pathol. 17: 53–62.

    Article  Google Scholar 

  • Crandall, M., Egel, R., and Mackay, V. L., 1977, Physiology of mating in three yeasts, Adv. Microb. Physiol. 15: 307–398.

    Article  PubMed  CAS  Google Scholar 

  • Crossin, K. L., and Carney, D. H., 1981, Evidence that microtubule depolymerization early in the cell cycle is sufficient to initiate DNA synthesis, Cell 23: 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, J. S., and Dahl, C. E., 1985, Stimulation of cell proliferation and polyphophoinositide metabolism in Saccharomyces cerevisiae GL7 by ergosterol, Biochem. Biophys. Res. Commun. 133: 844–850.

    Article  PubMed  CAS  Google Scholar 

  • Da Silva, R. L., and Wood, R. K. S., 1964, infection of plants by Corticium solani and Corticium praticola—Effect of plant exudates, Trans. Br. Mycol. Soc. 47: 15–24.

    Google Scholar 

  • Dickinson, S., 1949a, Studies in the physiology of obligate parasitism. I. The stimuli determining the direction of

    Google Scholar 

  • growth of the germ-tubes of rust and mildew spores. Ann. Bot. 13:89–104.

    Google Scholar 

  • Dickinson, S., 1949b, Studies in the physiology of obligate parasitism. II. The behaviour of the germ-tubes of certain rusts in contact with various membranes. Ann. Bot. 13: 219–236.

    Google Scholar 

  • Dickinson, S., 1979, Growth of Erysiphe graminis on artificial membranes. Physiol. Plant Pathol. 15: 219–221.

    Article  Google Scholar 

  • Dickinson, S., 1969, Studies in the physiology of obligate parasitism. VI. Directed growth, Phytopathol. Z. 66: 38–49.

    Article  Google Scholar 

  • Dickinson, S., 1970, Studies in the physiology of obligate parasitism. VII. The effect of a curved thigmotropic stimulus, Phytopathol. Z. 69:115–124

    Google Scholar 

  • Dickinson, S., 1971, Studies in the physiology of obligate parasitism. VIII. An analysis of fungal responses to thigmotropic stimuli, Phytopathol. Z. 70: 62–70.

    Article  Google Scholar 

  • Dickinson, S., 1972, Studies in the physiology of obligate parasitism. IX. The measurement of a thigmotropic stimulus, Phytopathol. Z. 73: 347–358.

    Article  Google Scholar 

  • Dickinson, S., 1977, Studies in the physiology of obligate parasitism. X. Induction of response to a thigmotropic stimulus, Phytopathol. Z. 89: 97–115.

    Article  Google Scholar 

  • Dodman, R. L., Barker, K. R., and Walker, J. C., 1968, A detailed study of the different modes of penetration by Rhizoctonia solani, Phytopathology 58: 1271–1276.

    Google Scholar 

  • Dunkle, L. D., Maheshwari, R., and Allen, P. J., 1969, Infection structures from rust urediospores: Effect of RNA and protein synthesis inhibitors, Science 163: 481–482.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, M. C., and Bowling, D. J. F., 1986, The growth of rust germ tubes towards stomata in relation to pH gradients, Physiol. Mol. Plant Pathol. 29: 185–196.

    Article  Google Scholar 

  • Emmett, R. W, and Parbery, D. G., 1975, Appressoria, Annu. Rev. Phytopathol. 13: 147–167.

    Article  Google Scholar 

  • Endo, R. M., and Amacher, R. H., 1964, Influence of guttation fluid on infection structures of Helminthosporium sorokinianum, Phytopathology 54: 1327–1334.

    Google Scholar 

  • Epstein, L., Laccetti, L., Staples, R. C., Hoch, H. C., and Hoose, W. A., 1985, Extracellular proteins associated with induction of differentiation in bean rust uredospore germlings, Phytopathology 75: 1073–1076.

    Article  CAS  Google Scholar 

  • Epstein, L., Laccetti, L. B., Staples, R. C., and Hoch, H. C.. 1987, Cell-substratum adhesive protein involved in surface contact responses of the bean rust fungus, Physiol. Mol. Plant Pathol. 30: 373–388.

    Article  CAS  Google Scholar 

  • Epstein, L., Staples, R. C., and Hoch, H. C., 1989, Cyclic AMP, cyclic GMP, and bean rust uredospore germlings, Exp. Mycol. 13: 100–104.

    Article  CAS  Google Scholar 

  • Europe-Finner, G. N., and Newell, P. C., 1985, Inositol 1,4,5-trisphosphate induces cyclic GMP formation in Dictyostelium discoideum, Biochem. Biophys. Res. Commun. 130: 1115–1122.

    Article  PubMed  CAS  Google Scholar 

  • Favre, B., and Milian, G., 1987, Identification of a calcium-and phospholipid-dependent protein kinase (protein kinase C) in Neurospora crassa, Plant Sci. 49: 15–21.

    Article  CAS  Google Scholar 

  • Flentje, N. T, 1957, Studies on Pellicularia filamentosa (Pat.) Rogers. III. Host penetration and resistance, and strain specialization, Trans. Br. Mycol. Soc. 40: 322–336.

    Article  Google Scholar 

  • Flentje, N. T., Dodman, R. L., and Kerr, A., 1963, The mechanism of host penetration by Thanatephorus cucumeris, Aust. J. Biol. Sci. 16: 784–799.

    Google Scholar 

  • Frank, A. B., 1883, Uber einige neue and weniger bekannte Pflanzenkrankheiten, Ber. Dtsch. Bot. Ges. 1:I 29–34, II 58–63.

    Google Scholar 

  • Frankel, D. G., 1985, On ras gene function in yeast, Proc. Nad. Acad. Sci. USA 82: 4740–4744.

    Article  Google Scholar 

  • French, R. C., and Weintraub, R. L., 1957, Pelargonaldehyde as an endogenous germination stimulator of wheat rust spores. Arch. Biochem. Biophys. 72: 235–237.

    Article  PubMed  CAS  Google Scholar 

  • Frossard, R., 1981, Effect of guttation fluids on growth of micro-organisms on leaves, in: Microbial Ecology of the Phylloplane ( J. P. Blakeman, ed.), Academic Press, New York, pp. 213–226.

    Google Scholar 

  • Gerisch, G., 1987, Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium, Annu. Rev. Biochem. 56: 853–879.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A. G., 1987, G proteins: Transducers of receptor-generated signals, Ann. M. Rev. Biochem. 56: 615–649.

    Article  CAS  Google Scholar 

  • Girbardt, M., 1955, Lebendbeobachtungen an Polystictus versicolor (L), Flora (Jena) 142: 540–563.

    Google Scholar 

  • Girbardt, M., 1957, Der Spitzenkörper von Polystictus versicolor (L), Planta 50: 47–59.

    Article  Google Scholar 

  • Gladders, P., and Coley-Smith, J. R., 1977, Infection cushion formation in Rhizoctonia tuliparum, Trans. Br. Mycol. Soc. 68: 155–118.

    Article  Google Scholar 

  • Gooday, G. W., 1974, Fungal sex hormones, Annu. Rev. Biochem. 43: 35–49.

    Article  PubMed  CAS  Google Scholar 

  • Grambow, H.-J., 1977, The influence of volatile leaf constituents on the in vitro differentiation and growth of Puccinia graminis f. sp. tritici, Z. Pflanzenphysiol 85: 361–372.

    CAS  Google Scholar 

  • Grambow, H.-J., 1979, A New Perspective of the Obligate Parasitism of the Wheat Rust Fungus Puccinia gramins f. sp. tritici, Habilitation thesis to RWTH, Aachen.

    Google Scholar 

  • Grambow, H.-J., and Grambow, G. E., 1978, The involvement of epicuticular and cell wall phenols of the host plant in the in vitro development of Puccinia graminis f. sp. tritici, Z. Pflanzenphysiol. 90: 1–9.

    CAS  Google Scholar 

  • Grambow, H.-J., and Riedel, S., 1977, The effect of morphogenically active factors from host and nonhost plants on the in vitro differentiation of infection structures of Puccinia graminis f. sb.’ tritici, Physiol. Plant Pathol. 11: 213–224.

    Article  Google Scholar 

  • Grove, S. N., and Bracker, C. E., 1970, Protoplasmic organization of hyphal tips among fungi: Vesicles and Spitzenkörper, J. Bacteriol. 104: 989–1009.

    PubMed  CAS  Google Scholar 

  • Grove, S. N., and Sweigard, J. A., 1980, Cytochalasin A inhibits spore germination and hyphal tip growth in Gilbertella persicari, Exp. Mycol. 4: 239–250.

    Article  CAS  Google Scholar 

  • Grove, S. N., Bracker, C. E., and Morre, D. J., 1970, An ultrastructural basis for hyphal tip growth in Phythium ultimum, Am. J. Bot. 57: 245–266.

    Article  Google Scholar 

  • Grover, R. K., 1971, Participation of host exudate chemicals in appressorium formation by Colletotrichum piperatum, in: Ecology of Leaf Surface Microorganisms ( T. F Preece and C. H. Dickinson, eds.), Academic Press, New York, pp. 509–518.

    Google Scholar 

  • Hamer, N. D., Howard, R. J., Chumley, F. G., and Valent, B., 1988, A mechanism for surface attachment in spores of a plant pathogenic fungus, Science 239: 288–290.

    Article  PubMed  CAS  Google Scholar 

  • Hasselbring, H., 1906, The appressoria of the anthracnoses, Bot. Gaz. 42: 135–142.

    Article  Google Scholar 

  • Hasunuma, K., and Fundera, K., 1987, GTP-binding protein(s) in green plant, Lemna paucicostata, Biochem. Biophys. Res. Commun. 143: 908–912.

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma, K., Miyamoto-Shinohara, Y., and Furukawa, K., 1987, Partial characterization of GTP-binding proteins in Neurospora, Biochem. Biophys. Res Commun. 146: 1178–1183.

    Article  PubMed  CAS  Google Scholar 

  • Hau, F. C., and Rush, M. C., 1979, Leaf surface interactions between Cochliobolus miyabeanus and susceptible and resistance rice cultivars, Phytopathology 69: 5–27.

    Google Scholar 

  • Hickman, C. J., 1970, Biology of Phytophthora zoospores, Phytopathology 60: 1128–1135.

    Article  Google Scholar 

  • Hickman, C. J., and Ho, H. H., 1966, Behaviour of zoospores in plant pathogenic Phycomycetes, Annu. Rev. Phytopathol. 4: 195–220.

    Article  Google Scholar 

  • Hill, T. W, and Mullins, J. T., 1980, Hyphal tip growth in Achyla. I. Cytoplasmic organization, Can. J. Bot. 26: 1132–1140.

    CAS  Google Scholar 

  • Ho, H. H., and Hickman, C. J., 1967, Factors governing zoospore responses of Phytophthora megasperma var. Sojae to plant roots, Can. J. Bot. 45: 1983–1994.

    Article  Google Scholar 

  • Hoch, H. C., and Staples, R. C., 1983, Ultrastructural organization of the non-differentiated uredospore germling of Uromyces phaseoli, Mycologia 75: 795–824.

    Article  Google Scholar 

  • Hoch, H. C., and Staples, R. C., 1984, Evidence that cyclic AMP initiates nuclear division and infection structure formation in the bean rust fungus, Uromyces phaseoli, Exp. Mycol. 8: 37–46.

    Article  CAS  Google Scholar 

  • Hoch, H. C., and Staples, R. C., 1987, Structural and chemical changes among the rust fungi during appressorium formation, Annu. Rev. Phytopathol. 25: 231–247.

    Article  Google Scholar 

  • Hoch, H. C., Bourett, T., and Staples, R. C., 1986, Inhibition of cell differentiation in Uromyces with D20 and taxol, Eur. J. Cell Biol. 41: 290–297.

    CAS  Google Scholar 

  • Hoch, H. C., Staples, R. C., and Bourett, T. M., I987a, Chemically induced appressoria in Uromyces appendiculatus are formed aerially, apart from the substrate, Mycologia 79: 418–424.

    Google Scholar 

  • Hoch, H. C., Staples, R. C., Whitehead, B., Comeau, J., and Wolf, E. D., 1987b, Signaling for growth orientation and cell differentiation by surface topography in Uromyces, Science 235: 1659–1662.

    Article  PubMed  CAS  Google Scholar 

  • Hoch, H. C., “nicker, B. E., and Staples, R. C., 1987c, An intact microtubule cytoskeleton is necessary for mediation of the signal for cell differentiation in Uromyces, Eur. J. Cell Biol. 45: 209–218.

    Google Scholar 

  • Hopkin, A. A., Reid, J., Hiratsuka, Y., and Allen, E., 1988, Initial infection and early colonization of Pinus contorta by Endocronartium harnessii (western gall rust), Can. J. Plant Pathol. 10: 221–227.

    Article  Google Scholar 

  • Howard, R. J., 1981, Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton, and endomembranes after freeze-substitution, J. Cell Sci. 48: 89–103.

    PubMed  CAS  Google Scholar 

  • Huang, B. F., and Staples, R. C., 1982, Synthesis of proteins during differentiation of the bean rust fungus, Exp. Mycol. 6: 7–14.

    Article  CAS  Google Scholar 

  • Hunt, P, 1968, Cuticular penetration by germinating uredospores, Trans. Br. Mycol. Soc. 51: 103–112.

    Article  Google Scholar 

  • Jenkins, S. F, and Winstead, N. N., 1964, Glomerella magna, cause of a new anthracnose of cucurbits, Phytopathology 54: 452–454.

    Google Scholar 

  • Johnson, T., 1934, A tropic response in germ tubes of urediospores of Puccinia graminis tritici, Phytopathology 24: 80–82.

    Google Scholar 

  • Kaminskyj, S. G. W, and Day, A. W, 1984a, Chemical induction of infection structures in rust fungi. I. Sugars and complex media, Exp. Mycol. 8: 63–72.

    Article  Google Scholar 

  • Kaminskyj, S. G. W, and Day, A. W, 1984b, Chemical induction of infection structures in rust fungi. II. Inorganic ions, Exp. Mycol. 8: 193–201.

    Article  CAS  Google Scholar 

  • Keogh, R. C., Deverall, B. J., and McLeod, S., 1980, Comparison of histological and physiological responses to Phakopsora pachyrhizi in resistant and susceptible soybean, Pans. Br. Mycol. Soc. 74: 329–333.

    Article  Google Scholar 

  • Kikkawa, U., and Nishizuka, Y., 1986, The role of protein kinase C in transmembrane signaling, Annu. Rev. Cell Biol. 2: 149–178.

    Article  PubMed  CAS  Google Scholar 

  • Kim, W K., Howes, N, K., and Rohringer, R., 1982, Detergent-soluble polypeptides in germinated uredospores and differentiated uredosporelings of wheat stem rust, Can. J. Plan: Pathol. 4: 328–333.

    CAS  Google Scholar 

  • Knights, I. K., and Lucas, J. A., 1980, Photosensitivity of Puccinia graminis f. sp. tritici urediniospores in vitro and on the leaf surface, Pans. Br. Mycol. Soc. 74: 543–549.

    Article  Google Scholar 

  • Koch, E., Ebrahim-Nesbat, F, and Hoppe, H. H., 1983, Light and electron microscopic studies on the development of soybean rust Phakopsora-pachyrhizi in susceptible soybean leaves, Phytopathol. Z. 106: 302–320.

    Google Scholar 

  • Lapp, M. S., and Skoropad, W P., 1978, Location of appressoria of Colletotrichum graminicola on natural and artificial barley leaf surfaces, Trans. Br. Mycol. Soc. 70: 225–228.

    Article  Google Scholar 

  • Lewis, B. G., and Day, J. R., 1972, Behaviour of urediospore germ tubes of Puccinia graminis tritici in relation to the fine structure of wheat leaf surfaces, Trans. Br. Mycol. Soc. 58: 139–145.

    Article  Google Scholar 

  • Littlefield, L. J., and Heath, M. C., 1979, Ultrastructure of Rust Fungi, Academic Press, New York.

    Google Scholar 

  • Maeda, K. M., 1970, An ultrastructural study of Venturia inaequalis (Cke.) Wint. infection of Malus hosts, M.S. thesis, Purdue University, Lafayette.

    Google Scholar 

  • Macko, V, Renwick, J. A. A., and Rissler, J. E, 1978, Acrolein induces differentiation of infection structures in the wheat stem rust fungus. Science 199: 442–443.

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari, R., Hildebrandt, A. C., and Allen, P. J., 1967, The cytology of infection structure development in uredospore germ tubes of Uromyces phaseoli var. typica (Pers.) Wint, Can. J. Bot. 45: 447–450.

    Article  Google Scholar 

  • Marshall, D. S., and Rush, M. C., 1980, Infection cushion formation on rice sheaths by Rhizoctonia solani, Phytopathology 70: 947–950.

    Article  Google Scholar 

  • Mendgen, K., and Dressler, E., 1983, Culturing Puccinia coronata on a cell monolayer of the Avenu sativa coleoptile, Phytopathol. Z. 108: 226–234.

    Article  Google Scholar 

  • Middlebrook, M. J., and Preston, R. D., 1952, Spiral growth and spiral structure. III. Wall structure in the growth zone of Phycomyces, Biochim. Biophys. Acta 9: 32–48.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415: 81–92.

    Article  Google Scholar 

  • Morse, M. J., Crain, R. C., and Satter, R. L., 1987, Phosphatidylinositol cycle metabolites in Samanea saman pulvini, Plant Physiol. 83: 640–644.

    Article  PubMed  CAS  Google Scholar 

  • Murray, D. I. L., 1982, Penetration of barley root and coleoptile surfaces by Rhizoctonia solani, Trans. Br. Mycol. Soc. 79: 354–360.

    Article  Google Scholar 

  • Musgrave, A., Lors, E., Scheffer, R„ and Oehlers, E., 1977, Chemotropism of Achyla bisexualis germ hyphae to casein hydrolysate and amino acids, J. Gen. Microbiol. 101: 65–70.

    Article  CAS  Google Scholar 

  • Nishizuka, Y., 1984, Protein kinases in signal transduction, Rends Biol. Sci. 9: 163–167.

    Article  Google Scholar 

  • Nushbaum, C. J., and Keitt, G. W, 1938, A cytological study of host-parasite relations of Venturia inaequalis on apple leaves, J. Agric. Res. 56: 595–618.

    Google Scholar 

  • Otto, A. M., Ulrich, M., Zumbe, A., and DeAsua, L. J., 1981, Microtubule-disrupting agents affect two different events regulating the initiation of DNA synthesis in Swiss 3T3 cells, Proc. Natl. Acad. Sci. USA 73: 3063–3067.

    Article  Google Scholar 

  • Pelham, H., 1988, Coming in from the cold, Nature 332: 776–777.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, G. W, and Walla, J. A., 1978, Development of Dothistroma pini upon and within needles of Australian and Ponderosa pines in eastern Nebraska, Phytopathology 68: 1422–1430.

    Article  Google Scholar 

  • Preece, T. F, Barnes, G., and Bayley, J. M., 1967, Junction between epidermal cells as sites of appressorium formation by plant pathogenic fungi, Plant Pathol. 16: 117–118.

    Article  Google Scholar 

  • Pring, R. J., 1980, A fine-structural study of the infection of leaves of Phaseolus vulgaris by uredospores of Uromyces phaseoli, Physiol. Plant Pathol. 17: 269–276.

    Google Scholar 

  • Rathaiah, Y., 1977, Stomata] tropism of Cercospora beticola in sugarbeet, Phytopathology 67: 358–362.

    Article  Google Scholar 

  • Reymond, C. D., Nellen, W, and Firtel, R. A., 1985, Regulated expression of ras gene constructs in Dictyostelium transformants, Proc. Natl. Acad. Sci. USA 82: 7005–7009.

    Article  PubMed  CAS  Google Scholar 

  • Royle, D. J., and Hickman, C. J., 1964, Analysis of factors governing in vitro accumulation of zoospores of Phythium aphanidermatium on roots. I. Behavior of zoospores, Can. J. Bot. 10: 151–162.

    Google Scholar 

  • Royle, D. J., and Thomas, G. G., 1971, The influence of stomata] opening on the infection of hop leaves by Pseudoperonospora humuli, Physiol. Plant Pathol. 1: 329–343.

    Article  Google Scholar 

  • Schlesinger, M. J., 1986, Heat-shock proteins: The search for functions, J. Cell Biol. 103: 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Schönherr, J., and Bukovac, M. J., 1970, Preferential polar pathways in the cuticle and their relationship to ectodesmata, Planta 92: 189–201.

    Article  Google Scholar 

  • Shaw, M., Boasson, R., and Scrubb, L., 1985, Effect of heat shock on protein synthesis in flax rust uredosporelings, Can. J. Bot. 63: 2069–2076.

    CAS  Google Scholar 

  • Staples, R. C., and Hoch, H. C., 1982, A possible role for microtubules and microfilaments in the induction of nuclear division in bean rust uredospore germlings, Exp. Mycol. 6: 293–302.

    Article  Google Scholar 

  • Staples, R. C., and Hoch, H. C., 1988, Preinfection changes in germlings of a rust fungus induced by host contact, in: Biotechnology for Crop Protection ( P A. Hedin, J. J. Menn, and R. M. Hollingworth, eds.), American Chemical Society, Washington, DC. pp. 82–93.

    Chapter  Google Scholar 

  • Staples, R. C., and Macko, V., 1984, Germination of urediospores and differentiation of infection structures in: The Cereal Rusts, Volume 1 ( W. R. Bushnell and A. J. Roelfs, eds.) Academic Press, New York, pp. 255–289.

    Google Scholar 

  • Staples, R. C., Laccetti, L., and Yaniv, Z., 1976, Appressorium formation and nuclear division in Colletotrichum truncatum, Arch. Microbiol. 109: 75–84.

    Article  CAS  Google Scholar 

  • Staples, R. C., Grambow, H. J., and Hoch, H. C., 1983a, Potassium ion induces rust fungi to develop infection structures, Exp. Mycol. 7: 40–46.

    Article  CAS  Google Scholar 

  • Staples, R. C., Grambow, H. J., Hoch, H. C., and Wynn, W. K., 1983b, Contact with membrane grooves induces wheat stem rust uredospore germlings to differentiate appressoria but not vesicles, Phytopathology 73: 1436–1439.

    Article  Google Scholar 

  • Staples, R. C., Macko, V., Wynn, W. K., and Hoch, H. C., 1984, Terminology to describe the differentiation response by germlings of fungal spores, Phytopathology 74: 3–80.

    Google Scholar 

  • Staples, R. C., Hassouna, S., and Hoch, H. C., 1985a, Effect of potassium on sugar uptake and assimilation by bean rust germlings, Mycologia 77: 248–252.

    Article  CAS  Google Scholar 

  • Staples, R. C., Hoch, H. C., and Epstein, L., 19856, The development of infection structures by the rust and other fungi, Microbiol. Sci. 2: 193–198.

    Google Scholar 

  • Staples, R. C., Hoch, H. C., Epstein, L., Laccetti, L., and Hassouna, S., 1985c, Recognition of host morphology by rust fungi: Responses and mechanisms, Can. J. Plant Pathol. 7: 314–322.

    Article  Google Scholar 

  • Staples, R. C., Yoder, O. C., Hoch, H. C., Epstein, L. and Bhairi, S., 1988, Gene expression during infection structure development by germlings of the rust fungus, in: Biology and Molecular Biology ofPlant—Pathogen Interactions ( J. A. Bailey, ed.), Springer-Verlag, Berlin, pp. 331–341.

    Google Scholar 

  • Staples, R. C., Hoch, H. C., Freve, P., and Bourett, T. M., 1989, Heat shock induced development of infection structures by bean rust uredospore germlings, Exp. Mycol. 13: 149–157.

    Article  CAS  Google Scholar 

  • Steward, A., Backhouse, D., Sutherland, P. W, and Fullerton, R. A., 1989, The development of infection structures of Sclerorium cepivorum on onion, J. Phytopathol. 126: 22–32.

    Article  Google Scholar 

  • Stockwell, V., and Hanchey, P., 1983, The role of the cuticle in resistance of beans to Rhizbctonia solani, Phytopathology 73: 1640–1642.

    Article  Google Scholar 

  • Stryer, L., and Boume, H. R., 1986, G proteins: A family of signal transducers, Annu. Rev. Cell Biol. 2: 391–419.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, B. C., 1962, Colletrichum dematium, and C. trichellum, Trans. Br. Mycol. Soc. 45: 222–232.

    Article  Google Scholar 

  • Suzuki, K., Furusawa, I., Ishida, N., and Yamamoto, M., 1981, Protein synthesis during germination and appressorium formation of Colletotrichum lagenarium spores, J. Gen. Microbial. 124: 61–69.

    Google Scholar 

  • Suzuki, K., Furusawa, I., Ishida, N., and Yamamoto, M., 1982, Chemical dissolution of cellulose membranes as a prerequisite for penetration from appressoria of Colletotrichum lagenarium, J. Gen Microbiol. 128: 1035–1039.

    CAS  Google Scholar 

  • Tan, K. K., 1978, Light induced fungal development, in: The Filamentous Fungi, Volume 3 ( J. E. Smith and D. R. Berry, eds.), Wiley, New York, pp. 334–357.

    Google Scholar 

  • Thevelein, J. M., 1984, Activation of trehalase by membrane-depolarizing agents in yeast vegetative cells and ascospores, J. Bacteriol. 158: 337–339.

    PubMed  CAS  Google Scholar 

  • Thorner, J.,1982, An essential role for cyclic AMP in growth control: The case for yeast, Cell 30:5–6.

    Google Scholar 

  • Toda, T., Uno, I., Ishikawa, T, Powers, S., Kataoka, T, Broek, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M., 1985, In yeast, RAS proteins are controlling elements of adenylate cyclase, Cell 40: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Dicker, B. E., Hoch, H. C., and Staples, R. C., 1986, The involvement of F-actin in Uromyces cell differentiation: The effect of cytochalasin E and phalloidin, Protoplasma 135: 88–101.

    Article  Google Scholar 

  • Thrian, G., 1978, Sexual morphogenesis in the Ascomycetes, in: The Filamentous Fungi, Volume 3 ( J. E. Smith and D. R. Berry, eds.), Wiley, New York, pp. 315–333.

    Google Scholar 

  • Wanner, R., Forster, H., Mendgen, K., and Staples, R. C., 1985, Synthesis of differentiation-specific proteins in germlings of the wheat stem rust fungus after heat shock, Exp. Mycol. 9: 279–283.

    Article  CAS  Google Scholar 

  • Wynn, W. K., 1976, Appressorium formation over stomates by the bean rust fungus: Response to a surface contact stimulus, Phytopathology 66: 136–146.

    Article  Google Scholar 

  • Wynn, W. K., 1981, Tropic and taxic responses of pathogens to plants, Annu. Rev. Phytopathol. 19: 237–255.

    Article  Google Scholar 

  • Wynn, W. K., and Staples, R. C., 1981, Tropisms of fungi in host recognition, In: Plant Disease Control: Resistance and Susceptibility ( R. C. Staples and G. H. Toenniessen, eds.), Wiley—Interscience, New York, pp. 45–69.

    Google Scholar 

  • Yeh, Y., and Frederiksen, R. A., 1980, Sorghum downy mildew: Biology of systemic infection by conidia and of a resistant response in sorghum, Phytopathology 70: 372–376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoch, H.C., Staples, R.C. (1991). Signaling for Infection Structure Formation in Fungi. In: Cole, G.T., Hoch, H.C. (eds) The Fungal Spore and Disease Initiation in Plants and Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2635-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2635-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2637-1

  • Online ISBN: 978-1-4899-2635-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics